精英家教网 > 高中数学 > 题目详情
18.已知点A是抛物线y=$\frac{1}{4}$x2的对称轴与准线的交点,点F为该抛物线的焦点,点P在抛物线上且满足|PF|=m|PA|,当m取最小值时,点P恰好在以A,F为焦点的双曲线上,则该双曲线的离心率为$\sqrt{2}$+1.

分析 过P作准线的垂线,垂足为N,则由抛物线的定义,结合||PF|=m|PA|,可得$\frac{|PN|}{|PA|}$=m,设PA的倾斜角为α,则当m取得最小值时,sinα最小,此时直线PA与抛物线相切,求出P的坐标,利用双曲线的定义,即可求得双曲线的离心率.

解答 解:抛物线的标准方程为x2=4y,
则抛物线的焦点为F(0,1),准线方程为y=-1,
过P作准线的垂线,垂足为N,
则由抛物线的定义可得|PN|=|PF|,
∵|PF|=m|PA|,∴|PN|=m|PA|,则$\frac{|PN|}{|PA|}$=m,
设PA的倾斜角为α,则sinα=m,
当m取得最小值时,sinα最小,此时直线PA与抛物线相切,
设直线PA的方程为y=kx-1,代入x2=4y,
可得x2=4(kx-1),
即x2-4kx+4=0,
∴△=16k2-16=0,∴k=±1,
∴P(2,1),
∴双曲线的实轴长为|PA|-|PB|=2($\sqrt{2}$-1),
∴双曲线的离心率为$\frac{2}{2(\sqrt{2}-1)}$=$\sqrt{2}$+1.
故答案为:$\sqrt{2}+1$

点评 本题考查抛物线的性质,考查双曲线、抛物线的定义,考查学生分析解决问题的能力,解答此题的关键是明确当m取得最小值时,sinα最小,此时直线PA与抛物线相切,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.把12个相同的球全部放入编号为1、2、3的三个盒内,要求盒内的球数不小于盒号数,则不同的放入方法种数为(  )
A.21B.28C.40D.72

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.数列{an}的前n项和为Sn,若an=$\frac{1}{n(n+1)}$,则S4=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{1-lo{g}_{2}x,x>0}\end{array}\right.$,则f(f(-2))=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知公差不为0等差数列{an}满足:a1,a2,a7成等比数列,a3=9.
(1)求{an}的通项公式;
(2)若数列{an}的前n项和Sn,求数列{$\frac{{S}_{n}}{n}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求证:f(x)为奇函数;
(3)若f(k•3x)+f(3x-9x-4)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.$\overrightarrow a$=(x-1,y),$\overrightarrow b$=(1,2),且$\overrightarrow a$⊥$\overrightarrow b$,则当x>0,y>0时,$\frac{1}{x}$+$\frac{1}{y}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若命题p:?x∈Z,ex<1,则?p为(  )
A.?x∈Z,ex<1B.?x∉Z,ex<1C.?x∈Z,ex≥1D.?x∉Z,ex≥1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=$\sqrt{2}$sin$\frac{x}{2}$cos$\frac{x}{2}$-$\sqrt{2}$sin2$\frac{x}{2}$.
(1)求f(x)的最小正周期;
(2)求f(x)在区间[0,π]上的单调减区间.

查看答案和解析>>

同步练习册答案