精英家教网 > 高中数学 > 题目详情
如图,已知抛物线C:y2=2px(p>0)的准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于A、B两点.
(Ⅰ)F为抛物线C的焦点,若,求k的值;
(Ⅱ)是否存在这样的k,使得对任意的p,抛物线上C总存在点Q,使得QA⊥QB,若存在,求出k的取值范围;若不存在,说明理由.
【答案】分析:(Ⅰ)设出直线l的倾斜角,借助于抛物线的定义,利用平面几何知识求出直线倾斜角的余弦值,则可求正切值,直线的斜率可求;
(Ⅱ)假设存在斜率为k的直线,使得对任意的p,抛物线上总存在点Q,使得QA⊥QB,写出过M点,斜率为k的直线方程,和抛物线联立后,由判别式大于0得到k的一个取值范围,再由QA⊥QB,即得三点Q,A,B的坐标的关系,进一步转化为Q点纵坐标的方程,再由判别式大于等于0求出k的取值范围,取交集后最终得到k的范围.
解答:解(Ⅰ)记A点到准线距离为d,直线l的倾斜角为α,由抛物线的定义知|AM|=
,则
∴k=±tanα=
(Ⅱ)存在k,k的取值范围为,使得对任意的p,抛物线上C总存在点Q,使得QA⊥QB.
事实上,假设存在这样的k,使得对任意的p,抛物线上C总存在点Q,使得QA⊥QB,
设点Q(x,y),A(x1,y1),B(x2,y2),
联立,得ky2-2py+p2k=0.
,得:-1<k<1且k≠0.

又Q、A、B三点在抛物线上,所以

同理
由QA⊥QB得:,即
,即
△=4p2-20k2p2≥0,解得,又-1<k<1且k≠0.
所以k的取值范围为
点评:本题考查了抛物线的简单几何性质,考查了直线与圆锥曲线的位置关系,解答的关键是利用直线和圆锥曲线相交转化为方程有根,再利用方程的判别式大于0(或大于等于0)求解.此题属有一定难度类型题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C:y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点. A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M(O为坐标原点).
(Ⅰ)求抛物线C的方程;
(Ⅱ)过M作MN⊥FA,垂足为N,求点N的坐标;
(Ⅲ)以M为圆心,4为半径作圆M,点P(m,0)是x轴上的一个动点,试讨论直线AP与圆M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线C:x2=2py(p>0)与圆O:x2+y2=8相交于A、B两点,且
OA
OB
=0
(O为坐标原点),直线l与圆O相切,切点在劣弧AB(含A、B两点)上,且与抛物线C相交于M、N两点,d是M、N两点到抛物线C的焦点的距离之和.
(Ⅰ)求p的值;
(Ⅱ)求d的最大值,并求d取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.
(Ⅰ)若AP⊥AQ,证明直线PQ过定点,并求出定点的坐标;
(Ⅱ)假设直线PQ过点T(5,-2),请问是否存在以PQ为底边的等腰三角形APQ?若存在,求出△APQ的个数?如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州一模)如图,已知抛物线C:y2=4x的焦点为F,过F的直线l与抛物线C交于A(x1,y1)(y1>0),B(x2,y2)两点,T为抛物线的准线与x轴的交点.
(1)若
TA
TB
=1
,求直线l的斜率;
(2)求∠ATF的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C:y2=4x焦点为F,直线l经过点F且与抛物线C相交于A、B两点.
(Ⅰ)若线段AB的中点在直线y=2上,求直线l的方程;
(Ⅱ)若|AB|=20,求直线l的方程.

查看答案和解析>>

同步练习册答案