精英家教网 > 高中数学 > 题目详情
2.关于函数f(x)=tan(2x-$\frac{π}{4}$),有以下命题:
①函数f(x)的定义域是{x|x≠$\frac{1}{2}$kπ+$\frac{3π}{8}$,k∈Z};
②函数f(x)是奇函数;
③函数f(x)的图象关于点($\frac{π}{8}$,0)对称;
④函数f(x)的一个单调递增区间为(-$\frac{π}{2}$,$\frac{π}{2}$).
其中,正确的命题序号是①③.

分析 根据正切函数的图象及性质依次判断即可.

解答 解:函数f(x)=tan(2x-$\frac{π}{4}$),
对于①:由题意,2x-$\frac{π}{4}$$≠\frac{π}{2}+kπ$,可得:x≠$\frac{1}{2}kπ+\frac{3π}{8}$.k∈Z.∴①对.
对于②:f(-x)=tan(-2x-$\frac{π}{4}$)=-tan(2x+$\frac{π}{4}$),f(-x)≠-f(x).∴函数f(x)不是奇函数,②不对.
对于③:令2x-$\frac{π}{4}$=$\frac{1}{2}$kπ,可得:x=$\frac{1}{4}kπ+\frac{π}{8}$,k为整数.当k=0时,可得图象关于点($\frac{π}{8}$,0)对称;∴③对.
对于④:令kπ$-\frac{π}{2}<2x-\frac{π}{4}<\frac{π}{2}$+kπ,可得:$\frac{1}{2}kπ-\frac{π}{8}<x<\frac{1}{2}kπ+\frac{3π}{8}$,∴④不对.
故答案为:①③.

点评 本题考查了正切函数的定义域,奇偶性,对称性,单调性的运用.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.某四棱台的三视图如图所示,则该四棱台的体积是(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,内角A,B,C所对的边分别为a,b,c,b(1-2cosA)=2acosB.
(1)若b=2,求c的值;
(2)若a=1,tanA=2$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.研究性学习小组要从6名(其中男生4人,女生2人)成员中任意选派3人去参加某次社会调查.
(Ⅰ)在男生甲被选中的情况下,求女生乙也被选中的概率;
(Ⅱ)设所选3人中女生人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.近期中央电视台播出的《中国诗词大会》火遍全国.某选拔赛后,随机抽取100名选手的成绩,按成绩由低到高依次分为第1,2,3,4,5组,制成频率分布直方图如图所示:
(Ⅰ)在第3、4、5组中用分层抽样抽取5名选手,求第3、4、5组每组各抽取多少名选手;
(Ⅱ)在(Ⅰ)的前提下,在5名选手中随机抽取2名选手,求第4组至少有一名选手被抽取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下面几种推理中是演绎推理的为(  )
A.科学家利用鱼的沉浮原理制造潜艇
B.猜想数列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…的通项公式为an=$\frac{1}{n(n+1)}$(n∈N+
C.半径为r的圆的面积S=πr2,则单位圆的面积S=π
D.由平面直角坐标系中圆的方程为(x-a)2+(y-b)2=r2,推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.根据如表样本数据
x3456
y2.5t44.5
得到回归方程y=0.7x+0.35,则t=(  )
A.2.6B.2.8C.2.9D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中,周期为π,且以直线x=$\frac{π}{3}$为对称轴的是(  )
A.$y=sin(\frac{x}{2}+\frac{π}{3})$B.$y=sin(2x-\frac{π}{6})$C.$y=cos(2x-\frac{π}{6})$D.$y=tan(x+\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{2}{cos^2}x+\frac{{\sqrt{3}}}{2}$sinxcosx+1.
(1)求函数f(x)的最小正周期和其图象对称中心的坐标;
(2)求函数f(x)在$[\frac{π}{12},\frac{π}{4}]$上的值域.

查看答案和解析>>

同步练习册答案