精英家教网 > 高中数学 > 题目详情

【题目】已知在四棱锥PABCD中,底面ABCD是矩形,且AD2AB1PA⊥平面ABCDEF分别是线段ABBC的中点.

(1)证明:PF⊥FD

(2)判断并说明PA上是否存在点G,使得EG∥平面PFD

(3)PB与平面ABCD所成的角为45°,求二面角APDF的余弦值.

【答案】(1)详见解析;(2)详见解析;(3).

【解析】

(1)因为PA平面ABCDBAD90°AB1AD2,建立如图所示的空间直角坐标系,则A(00,0)B(1,0,0)F(1,1,0)D(0,2,0)

不妨令P(0,0t),则(1,1,-t)(1,-1,0)

所以·1×11×(1)(t)×00,所以PFFD.

(2)设平面PFD的法向量为n(xyz),由(1)(1,1,-t)(1,-1,0),则由,得,令z1,则xy.

n是平面PFD的一个法向量.

G点坐标为(0,0m),因为E,则

要使EG平面PFD,只需·n0.×m×1m0

所以mt,从而PA上满足AGAP的点G可使得EG平面PFD.

(3)易知AB平面PAD,所以(1,0,0)是平面PAD的一个法向量.

又因为PA平面ABCD,所以PBAPB与平面ABCD所成的角,故PBA45°,所以PA1,则平面PFD的一个法向量为n

cosn〉=

由题图可判断二面角为锐角.故所求二面角APDF的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆离心率为,四个顶点构成的四边形的面积是4.

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆交于均在第一象限,轴、轴分别交于两点,设直线的斜率为,直线的斜率分别为,且(其中为坐标原点).证明: 直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中, , , 的中点,将沿向上折起,使平面平面

(Ⅰ)求证: ;

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,这三天中恰有两天下雨的概率近似为

A.0.35 B.0.25 C.0.20 D.0.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,直线的参数方程为(其中t为参数),现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为

(1)写出直线l普通方程和曲线C的直角坐标方程;

(2)过点且与直线平行的直线 两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某单位的食堂中,食堂每天以元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂某天购进了80斤米粉,以(单位:斤)(其中)表示米粉的需求量, (单位:元)表示利润.

(Ⅰ)计算当天米粉需求量的平均数,并直接写出需求量的众数和中位数;

(Ⅱ) 表示为的函数;

Ⅲ)根据直方图估计该天食堂利润不少于760元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足当n1时,an,且a1.

(1)求证:数列为等差数列;

(2)a1a2是否是数列{an}中的项?如果是,求出是第几项;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,若对于任意实数对,存在,使成立,则称集合垂直对点集;下列四个集合中,是垂直对点集的是(

A.B.

C.D.

查看答案和解析>>

同步练习册答案