精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆离心率为,四个顶点构成的四边形的面积是4.

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆交于均在第一象限,轴、轴分别交于两点,设直线的斜率为,直线的斜率分别为,且(其中为坐标原点).证明: 直线的斜率为定值.

【答案】(Ⅰ).

(Ⅱ)直线的斜率为定值.

【解析】试题分析:(Ⅰ)根据椭圆的离心率为,四个顶点构成的四边形的面积是4,列出结合即可求得的值从而求得椭圆的方程;()设直线的方程为,点的坐标分别为联立直线与椭圆的方程利用韦达定理可得,从而表示出,再将化简即可求得的值.

试题解析:(Ⅰ)由题意得

,解得.

所以椭圆的方程为

(Ⅱ)设直线的方程为,点的坐标分别为,由,消去

.

,即.

又结合图象可知,.

∴直线的斜率为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面.设分别为中点.

1)求证:平面

2)求证:平面

3)试问在线段上是否存在点,使得过三点的平面内的任一条直线都与平面平行?若存在,指出点的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求处切线方程;

(2)讨论的单调区间;

(3)试判断的实根个数说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农产品从51日起开始上市,通过市场调查,得到该农产品种植成本Q(单位:元/)与上市时间t(单位:天)的数据如下表:

t

50

110

250

Q

150

108

150

1)根据上表数据,从下列函数中选取一个函数描述该农产品种植成本Q与上市时间t的变化关系,并求出函数关系式:.

2)利用你选取的函数,求该农产品种植成本最低时的上市时间及最低种植成本.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有(  )

A. 144种 B. 72种 C. 64种 D. 84种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品促销活动设计了一个摸奖游戏:在一个口袋中装有4个红球和6个白球,这些球除颜色外完全相同,顾客一次从中摸出3个球,若3个都是白球则无奖励,若有1个红球则奖励10元购物券,若有2个红球则奖励20元购物券,若3个都是红球则奖励30元购物券.

(Ⅰ)求中奖的概率;

(Ⅱ)求顾客摸奖一次获得购物券奖励的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①;这两个条件中任选-一个,补充在下面问题中,然后解答补充完整的题.

中,角的对边分别为,已知 .

(1);

(2)如图,为边上一点,,求的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设奇函数上是增函数,且,则不等式的解集为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在四棱锥PABCD中,底面ABCD是矩形,且AD2AB1PA⊥平面ABCDEF分别是线段ABBC的中点.

(1)证明:PF⊥FD

(2)判断并说明PA上是否存在点G,使得EG∥平面PFD

(3)PB与平面ABCD所成的角为45°,求二面角APDF的余弦值.

查看答案和解析>>

同步练习册答案