【题目】设函数
的定义域为
,若满足条件:存在
,使
在
上的值域为
,则称
为“倍缩函数”.若函数
为“倍缩函数”,则实数
的取值范围是
A. (﹣∞,ln2﹣1) B. (﹣∞,ln2﹣1]
C. (1﹣ln2,+∞) D. [1﹣ln2,+∞)
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,且离心率为
.过点
的直线
与椭圆
交于
,
两点.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若点
为椭圆
的右顶点,探究:
是否为定值,若是,求出该定值,若不是,请说明理由.(其中,
,
分别是直线
、
的斜率)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,圆
,直线
.
(1)以原点
为极点,
轴正半轴为极轴建立极坐标系,求圆
和直线
的交点的极坐标;
(2)若点
为圆
和直线
交点的中点,且直线
的参数方程为
(
为参数),求
,
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)经过椭圆
的右焦点
的直线
与椭圆
交于
、
两点,
、
分别为椭圆
的左、右顶点,记
与
的面积分别为
和
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
与椭圆
相交于
两点,与
轴,
轴分别相交于点
和点
,且
,点
是点
关于
轴的对称点,
的延长线交椭圆于点
,过点
分别做
轴的垂线,垂足分别为
.
(1) 若椭圆
的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点
在椭圆
上,求椭圆
的方程;
(2)当
时,若点
平分线段
,求椭圆
的离心率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com