精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)设 ,若函数恰有一个零点,求实数的取值范围;

(2)设 ,对任意,有成立,求实数的取值范围.

【答案】(1).(2).

【解析】分析:(1)先求出,再求出,再利用导数分析函数的单调性和零点,得到a的取值范围.(2)先把命题转化为,再利用导数求函数的最大值和最小值代入可得实数的取值范围.

详解:(1)函数的定义域为,∴.

①当时,,所以上单调递增,

,则

(或:因为时,所以 .)因为,所以,此时函数有一个零点.

②当时,令,解得.时,

所以上单调递减;

时,,所以上单调递增.

要使函数有一个零点,则,即.

综上所述,若函数恰有一个零点,则.

(2)因为对任意,有成立,

因为 ,所以.

所以,所以.

时,,当时,

所以函数上单调递减,在上单调递增,

,所以.

所以上单调递增,故

所以.从而.

所以,

,则.时,

所以上单调递增.

所以,即,解得.因为

所以的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某代卖店代售的某种快餐,深受广大消费者喜爱,该种快餐每份进价为8元,并以每份12元的价格销售.如果当天19:00之前卖不完,剩余的该种快餐每份以5元的价格作特价处理,且全部售完.

(1)若这个代卖店每天定制15份该种快餐,求该种类型快餐当天的利润y(单位:元)关于当天需求量x(单位:份,)的函数解析式;

(2)该代卖点记录了一个月30天的每天19:00之前的销售数量该种快餐日需求量,统计数据如下:

日需求量

12

13

14

15

16

17

天数

4

5

6

8

4

3

以30天记录的日需求量的频率作为日需求量发生的概率,假设这个代卖店在这一个月内每天都定制15份该种快餐.

(i)求该种快餐当天的利润不少于52元的概率.

(ii)求这一个月该种快餐的日利润的平均数(精确到0.1).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是亚太区域国家与地区加强多边经济联系、交流与合作的重要组织,其宗旨和目标是“相互依存、共同利益,坚持开放性多边贸易体制和减少区域间贸易壁垒.”2017年会议于11月10日至11日在越南岘港举行.某研究机构为了了解各年龄层对会议的关注程度,随机选取了100名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分组区间分别为).

(1)求选取的市民年龄在内的人数;

(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人参与会议的宣传活动,求参与宣传活动的市民中至少有一人的年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),.

(1)若函数上的最大值为1,求的值;

(2)若存在使得关于的不等式成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等制划分标准为:85分及以上,记为等;分数在内,记为等;分数在内,记为等;60分以下,记为等.同时认定为合格, 为不合格.已知甲,乙两所学校学生的原始成绩均分布在内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为的所有数据茎叶图如图2所示.

(Ⅰ)求图1中的值,并根据样本数据比较甲乙两校的合格率;

(Ⅱ)在选取的样本中,从甲,乙两校等级的学生中随机抽取3名学生进行调研,用表示所抽取的3名学生中甲校的学生人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 的中点, 的中点,且为正三角形.

(1)求证: 平面

(2)若三棱锥的体积为1,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆的极坐标方程为.

(1)求直线的普通方程与圆的直角坐标方程;

(2)设动点在圆上,动线段的中点的轨迹为与直线交点为,且直角坐标系中,点的横坐标大于点的横坐标,求点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.

(I)请将两家公司各一名推销员的日工资(单位: 元) 分别表示为日销售件数的函数关系式;

(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。若记甲公司该推销员的日工资为,乙公司该推销员的日工资为(单位: 元),将该频率视为概率,请回答下面问题:

某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知圆的圆心为,半径为.以极点为原点,极轴方向为轴正半轴方向,利用相同单位长度建立平面直角坐标系,直线的参数方程为为参数,).

(Ⅰ)写出圆的极坐标方程和直线的普通方程;

(Ⅱ)若直线与圆交于两点,求的最小值.

查看答案和解析>>

同步练习册答案