【题目】如图,在三棱锥中, , , 为的中点, 为的中点,且为正三角形.
(1)求证: 平面;
(2)若,三棱锥的体积为1,求点到平面的距离.
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①将, , 三种个体按3:1:2的比例分层抽样调查,若抽取的个体为12个,则样本容量为30;
②一组数据1、2、3、4、5的平均数、中位数相同;
③甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲;
④统计的10个样本数据为95,105,114,116,120,120,122,125,130,134,则样本数据落在内的频率为0.4.
其中真命题为( )
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中,椭圆: 的长轴长为4,离心率为.
(1)求椭圆的标准方程;
(2)过右焦点作一条不与坐标轴平行的直线,若交椭圆与、两点,点关于原点的对称点为,求的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在分以下的学生后, 共有男生名,女生名,现采用分层抽样的方法,从中抽取了名学生,按性别分为两组,并将两组学生成绩分为组, 得到如下频数分布表.
(Ⅰ)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,能否判断数学成绩与性别有关;
(Ⅱ)规定分以上为优分(含分),请你根据已知条件完成列联表,并判断是否有%以上的把握认为“数学成绩与性别有关”,( ,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆的左、右焦点分别为、,定点A(-2,0),B(2,0).
(1) 若椭圆C上存在点T,使得,求椭圆C的离心率的取值范围;
(2) 已知点在椭圆C上.
①求椭圆C的方程;
②记M为椭圆C上的动点,直线AM,BM分别与椭圆C交于另一点P,Q,若, .求λ+μ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆: 的离心率为,过其右焦点与长轴垂直的直线与椭圆在第一象限相交于点, .
(1)求椭圆的标准方程;
(2)设椭圆的左顶点为,右顶点为,点是椭圆上的动点,且点与点, 不重合,直线与直线相交于点,直线与直线相交于点,求证:以线段为直径的圆恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数, .
(Ⅰ)若,求的极小值;
(Ⅱ)在(Ⅰ)的条件下,是否存在实常数和,使得和?若存在,求出和的值.若不存在,说明理由;
(Ⅲ)设有两个零点,且成等差数列,试探究值的符号.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com