精英家教网 > 高中数学 > 题目详情
1.已知α为三角形的一个内角.且tan(π-α)=$\sqrt{3}$.则角α的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 利用诱导公式,特殊角的三角函数值,求得角α的值.

解答 解:∵知α为三角形的一个内角,且tan(π-α)=-tanα=$\sqrt{3}$,∴tanα=-$\sqrt{3}$,∴α=$\frac{2π}{3}$,
故选:C.

点评 本题主要考查诱导公式,特殊角的三角函数值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知斜三棱柱ABC-A1B1C1的底面是边长为2的正三角形,顶点A1在底面ABC上的射影O是△ABC的中心,AA1与AB的夹角为45°
(1)求证:AA1⊥平面A1BC;
(2)侧面BB1C1C是矩形;
(3)求棱柱的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知F是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,若以点B(0,b)为圆心的圆与双曲线的一条渐近线相切于点P,且$\overrightarrow{BP}$∥$\overrightarrow{PF}$,则该双曲线的离心率为(  )
A.$\sqrt{5}$+1B.$\frac{{1+\sqrt{3}}}{2}$C.2D.$\frac{{1+\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设x>0,求$\frac{2{x}^{2}+5x+3}{x}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,a、b、c分别是角A、B、C的对边,若a2+c2=b2+ac,且a:c=($\sqrt{3}$+1):2,求角C的值是$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\frac{sin2x}{1+co{s}^{2}x}$=$\frac{2}{3}$,求tanx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.不等式log 2 |x-3|<1的解集为{x|1<x<3或3<x<5}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|$\frac{1}{x}-$1|.
(1)若0<a<b且f(a)=f(b),求y=a-$\frac{2}{b}$的取值范围;
(2)若存在正实数a、b使得函数f(x)的定义域为[a,b],值域为[ma,mb],求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.动圆P过点M(-1,O),且与圆N:x2+y2-2x-15=0内切,记圆心P的轨迹为曲线τ.
( 1)求曲线τ的方程;
(2)过点M且斜率大于0的直线l与圆P相切,与曲线τ交于A,B两点,A的中点为Q.若点Q的横坐标为-$\frac{4}{13}$,求圆P的半径r.

查看答案和解析>>

同步练习册答案