分析 (1)由题意可得A1A=A1B=A1C,又∠A1AB=45°,可得∠A1BA═∠A1CA═∠A1AC═45°,即证明AA1⊥A1B,AA1⊥A1C,进而即可判定AA1⊥平面A1BC.
(2)连AO并延长交BC于D,证明AA1⊥BC,由BB1∥AA1,可知BB1⊥BC,即可证明BCC1B1是矩形,
(3)在Rt△AA1B中,可求AA1=A1B=$\frac{\sqrt{2}}{2}$AB,BC=2,利用三角形面积公式,矩形面积公式即可计算得解S侧=2S${\;}_{{AA}_{1}{B}_{1}B}$+S${\;}_{BC{C}_{1}{B}_{1}}$的值.
解答
解:(1)如图,∵A1在底面ABC上的射影O为正△ABC的中心,
∴A1A=A1B=A1C.
又∵∠A1AB=45°,
∴∠A1BA═∠A1CA═∠A1AC═45°,
∴∠AA1B═∠AA1C═90°,即AA1⊥A1B,AA1⊥A1C,
又A1B∩A1C═A1,
∴AA1⊥平面A1BC.
(2)连AO并延长交BC于D,由条件知:AD⊥BC,AO为AA1在底面ABC的射影,
∴AA1⊥BC.
∵BB1∥AA1,
∴BB1⊥BC,
∴BCC1B1是矩形,
(3)在Rt△AA1B中,AA1=A1B=$\frac{\sqrt{2}}{2}$AB,BC=2,
∴S${\;}_{{AA}_{1}{B}_{1}B}$=2S${\;}_{△A{A}_{1}B}$=AA1•ABsin45°=2,S${\;}_{BC{C}_{1}{B}_{1}}$=2$\sqrt{2}$,
∴S侧=2S${\;}_{{AA}_{1}{B}_{1}B}$+S${\;}_{BC{C}_{1}{B}_{1}}$=4+2$\sqrt{2}$.
点评 本题考查了直线与平面垂直的判定以及求棱柱的侧面积等问题,解题时应画出图形,数形结合,适当地转化计算方法,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (1,0) | C. | (0,2) | D. | (2,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com