分析 (1)数列{an}满足a1=3,2(n+1)an-nan+1=2n+4,变形为:$\frac{{a}_{n+1}-2}{n+1}$=2×$\frac{{a}_{n}-2}{n}$,即可证明.
(2)由bn=$\frac{{2}^{n-1}}{{a}_{n}-2}$=$\frac{1}{n}$.可得bn+1+bn+2+…+b2n=$\frac{1}{n+1}+\frac{1}{n+2}$+…+$\frac{1}{2n}$≥$\frac{n}{2n}$=$\frac{1}{2}$,利用首项归纳法证明:bn+1+bn+2+…+b2n≤$\frac{5}{6}$-$\frac{1}{2n+1}$.即可得出.
解答 (1)证明:∵数列{an}满足a1=3,2(n+1)an-nan+1=2n+4,
∴$\frac{{a}_{n+1}-2}{n+1}$=2×$\frac{{a}_{n}-2}{n}$,$\frac{{a}_{1}-2}{1}$=1,
∴:{$\frac{{a}_{n}-2}{n}$}为等比数列,首项为1,公比为2.
∴$\frac{{a}_{n}-2}{n}$=2n-1,可得an=2+n•2n-1.
(2)解:∵bn=$\frac{{2}^{n-1}}{{a}_{n}-2}$=$\frac{1}{n}$.
∴bn+1+bn+2+…+b2n=$\frac{1}{n+1}+\frac{1}{n+2}$+…+$\frac{1}{2n}$≥$\frac{n}{2n}$=$\frac{1}{2}$,
下面利用首项归纳法证明:bn+1+bn+2+…+b2n≤$\frac{5}{6}$-$\frac{1}{2n+1}$.
①当n=1时,b2=$\frac{1}{2}$=$\frac{5}{6}$-$\frac{1}{3}$,成立.
②假设当n=k(k∈N*)时,bk+1+bk+2+…+b2k≤$\frac{5}{6}$-$\frac{1}{2k+1}$.
则n=k+1时,bk+1+bk+2+…+b2k+b2k+1+b2k+2-bk+1≤$\frac{5}{6}$-$\frac{1}{2k+1}$$-\frac{1}{k+1}$+$\frac{1}{2k+1}$+$\frac{1}{2k+2}$=$\frac{5}{6}$-$\frac{1}{2k+2}$≤$\frac{5}{6}$-$\frac{1}{2k+3}$.
∴n=k+1时也成立,因此:bn+1+bn+2+…+b2n≤$\frac{5}{6}$-$\frac{1}{2n+1}$成立.
综上可得:$\frac{1}{2}$≤bn+1+bn+2+…+b2n≤$\frac{5}{6}$-$\frac{1}{2n+1}$.
点评 本题考查了递推关系、等比数列的通项公式、数学归纳法、不等式的性质,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | -$\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | -5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2n-1 | B. | n2 | C. | $\frac{(n+1)^{2}}{{n}^{2}}$ | D. | $\frac{{n}^{2}}{(n-1)^{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com