【题目】已知函数
为自然对数的底数),
.
(Ⅰ)当
时,求函数
的单调区间和极值;
(Ⅱ)已知函数
在
上为增函数,且
,若在
上至少存在一个实数
,使得
成立,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,对于点
,定义变换
:将点
变换为点
,使得
其中
.这样变换
就将坐标系
内的曲线变换为坐标系
内的曲线.则四个函数
,
,
,
在坐标系
内的图象,变换为坐标系
内的四条曲线(如图)依次是
![]()
A. ②,③,①,④B. ③,②,④,①C. ②,③,④,①D. ③,②,①,④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图1是由正方形
,直角梯形
,三角形
组成的一个平面图形,其中
,
,将其沿
,
折起使得
与
重合,连接
,如图2.
![]()
(1)证明:图2中的
,
,
,
四点共面,且平面
平面
;
(2)求图2中的二面角
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“剑桥学派”创始人之一数学家哈代说过:“数学家的造型,同画家和诗人一样,也应当是美丽的”;古希腊数学家毕达哥拉斯创造的“黄金分割”给我们的生活处处带来美;我国古代数学家赵爽创造了优美“弦图”.“弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为
,则
等于( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知离心率为
的椭圆
的左顶点为
,且椭圆
经过点
,与坐标轴不垂直的直线
与椭圆
交于
两点.
(1)求椭圆
的标准方程;
(2)若直线
和直线
的斜率之积为
,求证:直线
过定点;
(3)若
为椭圆
上一点,且
,求三角形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点的椭圆
和抛物线
有相同的焦点
,椭圆
过点
,抛物线
的顶点为原点.
![]()
求椭圆
和抛物线
的方程;
设点P为抛物线
准线上的任意一点,过点P作抛物线
的两条切线PA,PB,其中A,B为切点.
设直线PA,PB的斜率分别为
,
,求证:
为定值;
若直线AB交椭圆
于C,D两点,
,
分别是
,
的面积,试问:
是否有最小值?若有,求出最小值;若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数
有以下三个判断
①函数恒有两个零点且两个零点之积为-1;
②函数恒有两个极值点且两个极值点之积为-1;
③若
是函数的一个极值点,则函数极小值为-1.
其中正确判断的个数有( )
A.0个B.1个C.
个D.
个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列
中,若
是正整数,且
,
,则称
为“D-数列”.
(1)举出一个前六项均不为零的“D-数列”(只要求依次写出该数列的前六项);
(2)若“D-数列”
中,
,
,数列
满足
,
,分别判断当
时,
与
的极限是否存在?如果存在,求出其极限值(若不存在不需要交代理由);
(3)证明:任何“D-数列”中总含有无穷多个为零的项.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com