在⊿ABC中,角A,B,C的对边分别为A,b,C,且满足(2A-C)CosB=bCosC.
(Ⅰ)求角B的大小;
(Ⅱ)已知函数f(A,C)=Cos2A+sin2C,求f(A,C)的最大值。
科目:高中数学 来源: 题型:解答题
设函数f(θ)=
sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(1)若点P的坐标为
,求f(θ)的值;
(2)若点P(x,y)为平面区域Ω:
,上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数f(x)=
-sin(2x-
).
(I)求函数f(x)的最大值和最小值;
(Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,c=3,f(
)=
,若
,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数
的最大值为
,最小值为
,其中
.
(1)求
、
的值(用
表示);
(2)已知角
的顶点与平面直角坐标系
中的原点
重合,始边与
轴的正半轴重合,终边经过点
.求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com