精英家教网 > 高中数学 > 题目详情

中,角所对的边分别为,且.
(Ⅰ)求函数的最大值;
(Ⅱ)若,求的值.

(Ⅰ);(Ⅱ)3.

解析试题分析:(Ⅰ)化为的类型再求解;(Ⅱ)由求出,进而求出,再用正弦定理求出的值.
试题解析:(Ⅰ).因为,所以.所以当时,取得最大值,最大值为.
(Ⅱ)由题意知,所以
又知,所以,则.因为,所以,则
由正弦定理得,
考点:三角函数恒等变换、正弦定理的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,其中,若函数,且函数的图象与直线相邻两公共点间的距离为.
(1)求的值;
(2)在中.分别是的对边,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在⊿ABC中,角A,B,C的对边分别为A,b,C,且满足(2A-C)CosB=bCosC.
(Ⅰ)求角B的大小;
(Ⅱ)已知函数f(A,C)=Cos2A+sin2C,求f(A,C)的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△ABC的三个内角A、B、C所对的边分别为a,b,c,且.
(1)求角A的大小,
(2)若,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求的最大值和最小值;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最大值是1,最小正周期是,其图像经过点
(1)求的解析式;
(2)设为△ABC的三个内角,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若方程上有解,求的取值范围;
(Ⅱ)在中,分别是A,B,C所对的边,若,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,已知,其中分别为的内角所对的边.求:
(Ⅰ)求角的大小;
(Ⅱ)求满足不等式的角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=.
(1)求函数的最小正周期和单调递增区间;
(2)求在区间上的最大值和最小值.

查看答案和解析>>

同步练习册答案