精英家教网 > 高中数学 > 题目详情

已知,其中,若函数,且函数的图象与直线相邻两公共点间的距离为.
(1)求的值;
(2)在中.分别是的对边,且,求的面积.

(1);(2).

解析试题分析:本题考查三角函数、平面向量、余弦定理等基础知识以及运用三角公式进行三角变换的能力.第一问,先利用向量的数量积列出表达式,再利用倍角公式化简表达式,最后利用两角和与差的正弦公式化简,得到后,利用已知条件理解得到,所以;第二问,把第一问的代入,得到,因为,所以将代入解析式,通过确定角的范围确定,根据已知条件,利用余弦定理求出两组的值,最后代入到三角形面积公式中即可.
试题解析:(1)


.(3分)
,∴函数的周期
∵函数的图象与直线相邻两公共点间的距离为.
,∴.(6分)
(2)由(1)可知
,∴.

,∴
 .(10分)
由余弦定理知
,又
联立解得
.(13分)
(或用配方法:∵,∴,∴)
考点:1.向量的数量积;2.降幂公式;3.两角和与差的正弦定理;4.三角函数的周期;5.余弦定理;6.三角形面积公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知
(1)求证:向量与向量不可能平行;
(2)若,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,设函数.
(Ⅰ)求的最小正周期与最大值;
(Ⅱ)在中,分别是角的对边,若的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)求在区间上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的值;
(2)若,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中角的顶点与坐标原点重合,始边与轴非负半轴重合,
终边经过点,且.
(1)若点的坐标为,求的值;
(2)若点为平面区域上的一个动点,试确定角的取值范围,并求函数的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(θ)=sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(1)若点P的坐标为,求f(θ)的值;
(2)若点P(x,y)为平面区域Ω:,上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=-sin(2x-).
(I)求函数f(x)的最大值和最小值;
(Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,c=3,f()=,若,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,且.
(Ⅰ)求函数的最大值;
(Ⅱ)若,求的值.

查看答案和解析>>

同步练习册答案