精英家教网 > 高中数学 > 题目详情

设数列{an}的前n项和为Sn,且满足Sn=n-an,n∈N*
(Ⅰ)证明数列{an-1}是等比数列;
(Ⅱ)设cn=-2nan+2n,数列{cn}的前n项和为Tn,求证:Tn<4.

解:(Ⅰ)∵n=1时,S1=1-a1,即a1=1-a1,a1=
∵Sn=n-an,∴Sn-1=n-1-an-1,n>1.
两式相减,得an=an-1+.…(3分)
an-1=(an-1-1).
从而{an-1}为等比数列,首项a1-1=-,公比为.…(6分)
(Ⅱ)由(Ⅰ)知an-1=.从而an=.…(8分)
∵cn=-2nan+2n,∴=
.…(10分)
从而
两式相减,得
-=
∴Tn<4.…(13分)
分析:(Ⅰ)求出a1,然后利用an=Sn-Sn-1得到an与an-1的关系,化简为数列{an-1}中任意相邻两项之间的关系,通过等比数列的定义证明数列是等比数列;
(Ⅱ)通过(Ⅰ)求出数列的通项公式,结合cn=-2nan+2n,求出数列{cn}的前n项和为Tn的表达式,利用错位相减法求出数列的前n项和,即可求证:Tn<4.
点评:证明数列是等差数列还是等比数列,常用数列的定义证明,在第二问中,错位相减法是数列求和的常用方法,注意构造法在数列中的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案