在△ABC中,AB=3,AC边上的中线BD=
, ![]()
(1)求AC的长;
(2)求sin(2A-B)的值.
(1) AC=2;(2) sin(2A-B)=![]()
解析试题分析:(1)由已知条件可得
,又
,进行向量运算可得
,则求得AC;(2)先由向量的数量积求得
,可得
,余弦定理求得BC,再正弦定理求得
,可得
,sin(2A-B)展开代入可得.
解:(1)
,AB=3,AC=2AD, ∴
,
=
=
+
+2
·
=
+9-
×2=
+4=5,
∴AD=|
|=1,AC=2. 6分
(2)由(1)得
,
=
,∴
=
,
在△ABC中,BC2=AB2+AC2-2AB·AC
, ∴BC=![]()
在△ABC中,
,
∴
=
,∴
=
,
sin(2A-B)=sin2A·cosB-cos2A·sinB=2sinA·cosA·cosB-(1-2sin2A)·sinB
=2×
×
×
-
×
=
. 13分
考点:向量的数量积,正弦定理,余弦定理.
科目:高中数学 来源: 题型:解答题
如图,
是边长为1的正三角形,
分别是边
上的点,
段
过
的重心
,设
.
(1)当
时,求
的长;
(2)分别记
的面积为
,试将
表示为
的函数;
(3)求
的最大值和最小值。![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com