精英家教网 > 高中数学 > 题目详情

中,已知.
(1)求角的值;
(2)若的边,求边的长.

(1);(2).

解析试题分析:(1)利用并结合两角差的余弦公式求出,然后再结合的范围求出的值,利用三角形的内角和定理得到,最后再利用两角和的正弦公式求出的值;(2)在(1)的基础上直接利用正弦定理求出的长度.
(1)由,得
可得



中,

(2)在中,由正弦定理得:.
考点:1.两角和与差的三角函数;2.内角和定理;3.正弦定理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量,函数
(1)求函数的对称中心;
(2)在中,分别是角对边,且,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2011•湖北)设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=
(Ⅰ)求△ABC的周长;
(Ⅱ)求cos(A﹣C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是两个小区所在地,到一条公路的垂直距离分别为两端之间的距离为.
(1)某移动公司将在之间找一点,在处建造一个信号塔,使得的张角与的张角相等,试确定点的位置.
(2)环保部门将在之间找一点,在处建造一个垃圾处理厂,使得所张角最大,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.

(1)求渔船甲的速度.
(2)求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知A、B、C分别为△ABC的三边a、b、c所对的角,向量,且.
(1)求角C的大小:
(2)若sinA,sinC,sinB成等差数列,且,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

风景秀美的湖畔有四棵高大的银杏树,记做,欲测量两棵树和两棵树之间的距离,但湖岸部分地方围有铁丝网不能靠近,现在可以方便的测得两点间的距离为米,如图,同时也能测量出,则两棵树和两棵树之间的距离各为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,AB=3,AC边上的中线BD=
(1)求AC的长;
(2)求sin(2A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=cosC.
(1)求tanC的值;
(2)若a=,求△ABC的面积.

查看答案和解析>>

同步练习册答案