精英家教网 > 高中数学 > 题目详情

已知向量,函数
(1)求函数的对称中心;
(2)在中,分别是角对边,且,且,求的取值范围.

(1) (2)

解析试题分析:(1)此类问题往往是利用向量数量积定义及二倍角公式把f(x)化简成f(x)或者f(x)的形式,然后利用从而由y=sinx或者y=cosx的对称中心求出f(x)的对称中心.(2)求范围问题往往利用函数的思想,因此本题需要转化到关于边或者三角的函数问题,由题意可知将用正弦定理将边的关系转化为三角关系,利用三角函数的值域来确定的范围.
(1)f(x)=
,得出,函数f(x)的对称中心
(2)f(C)=,,因为C为锐角,,由正弦定理a=2sinA,b=2sinB,
,A>B>C=,
考点:1.向量的数量积2.二倍角公式3.正弦定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在ΔABC中,角A、B、C所对的边分别为,且,,.
(1)求的值;(2)求ΔABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设M是弧度为的∠AOB的角平分线上的一点,且OM=1,过M任作一直线与∠AOB的两边分别交OA、OB于点E,F,记∠OEM=x.
(1)若时,试问x的值为多少?(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,∠A,∠B,∠C所对的边分别是a、b、c,不等式≥0对一切实数恒成立.
(1)求cosC的取值范围;
(2)当∠C取最大值,且△ABC的周长为6时,求△ABC面积的最大值,并指出面积取最大值时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的内角所对的边分别为.
(1)若成等差数列,证明:
(2)若成等比数列,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中,是三个内角的对边,关于的不等式的解集是空集.
(1)求角的最大值;
(2)若的面积,求当角取最大值时,的值.[

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别为的三边所对的角,向量,且.
(1)求角的大小;
(2)若成等差数列,且,求边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知.
(1)求角的值;
(2)若的边,求边的长.

查看答案和解析>>

同步练习册答案