精英家教网 > 高中数学 > 题目详情

(12分)(2011•湖北)设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=
(Ⅰ)求△ABC的周长;
(Ⅱ)求cos(A﹣C)的值.

(Ⅰ)5(Ⅱ)

解析试题分析:(I)利用余弦定理表示出c的平方,把a,b及cosC的值代入求出c的值,从而求出三角形ABC的周长;
(II)根据cosC的值,利用同角三角函数间的基本关系求出sinC的值,然后由a,c及sinC的值,利用正弦定理即可求出sinA的值,根据大边对大角,由a小于c得到A小于C,即A为锐角,则根据sinA的值利用同角三角函数间的基本关系求出cosA的值,然后利用两角差的余弦函数公式化简所求的式子,把各自的值代入即可求出值.
解:(I)∵c2=a2+b2﹣2abcosC=1+4﹣4×=4,
∴c=2,
∴△ABC的周长为a+b+c=1+2+2=5.
(II)∵cosC=,∴sinC===
∴sinA===
∵a<c,∴A<C,故A为锐角.则cosA==
∴cos(A﹣C)=cosAcosC+sinAsinC=×+×=
点评:本题主要考查三角函数的基本公式和解斜三角形的基础知识,同时考查学生的基本运算能力,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设M是弧度为的∠AOB的角平分线上的一点,且OM=1,过M任作一直线与∠AOB的两边分别交OA、OB于点E,F,记∠OEM=x.
(1)若时,试问x的值为多少?(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别为的三边所对的角,向量,且.
(1)求角的大小;
(2)若成等差数列,且,求边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知,试判断的形状。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,A、B、C是三角形的三内角,是三内角对应的三边,已知.(1)求角A的大小;(2)若,且△ABC的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知A、B、C分别为△ABC的三边a、b、c所对的角,向量
,且.
(1)求角C的大小:
(2)若sinA,sinC,sinB成等差数列,且,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知.
(1)求角的值;
(2)若的边,求边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量m=(sin ,1),n=(cos ,cos2).记f(x)=m·n.
(1)若f(α)=,求cos(-α)的值;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cos B=bcos C,若f(A)=,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,且满足
(1) 求角的大小;
(2) 当取得最大值时,请判断的形状.

查看答案和解析>>

同步练习册答案