精英家教网 > 高中数学 > 题目详情
14.已知全集U=R,集合M={x|x2-4≤0},则∁UM=(  )
A.{x|-2<x<2}B.{x|-2≤x≤2}C.{x|x<-2或x>2}D.{x|x≤-2或x≥2}

分析 直接解一元二次不等式化简集合M,再由补集的运算性质计算得答案.

解答 解:∵M={x|x2-4≤0}={x|-2≤x≤2},全集U=R,
∴∁UM={x|x<-2或x>2}.
故选:C.

点评 本题考查了补集及其运算,考查了不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|,0<x≤3}\\{\frac{1}{8}{x}^{2}-\frac{3}{2}x+\frac{35}{8},x>3}\end{array}\right.$,若函数g(x)=f(x)-m存在4个不同的零点x1,x2,x3,x4,则实数m的取值范围是(0,1),x1•x2•x3•x4的取值范围是(27,35).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.甲和乙两人约定在某天早上6:30到7:30之间在校门口见面,假设每人都是随机的在这个小时内的任意时刻到达,且只等15分钟.则他们能碰面的概率是$\frac{7}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.按下列程序框图运算,则输出的结果是(  )
A.42B.128C.170D.682

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知tan(-α-$\frac{4}{3}$π)=-5,则tan($\frac{π}{3}$+α)的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若角θ满足sinθ<0,tanθ<0,则角θ是(  )
A.第一象限角或第二象限角B.第二象限角或第四象限角
C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}满足$\frac{1}{{a}_{n}+1}$=$\frac{2}{{a}_{n+1}+1}$,且a2=2,则a7=95.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=Asin(ωx+φ)(A,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,则tanφ=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2-(a+1)x+1(a∈R).
(1若关于x的不等式f(x)<0的解集是{x|m<x<2},求a,m的值;
(2)设关于x的不等式f(x)≤0的解集是A,集合B={x|0≤x≤1},若 A∩B=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案