精英家教网 > 高中数学 > 题目详情

【题目】莫言是中国首位获得诺贝尔文学奖的文学家,国人欢欣鼓舞。某高校文学社从男女生中各抽取50名同学调查对莫言作品的了程度,结果如下:

阅读过莫言的作品数(篇)

0~25

26~50

51~75

76~100

101~130

男生

3

6

11

18

12

女生

4

8

13

15

10


(1)试估计该学校学生阅读莫言作品超过50篇的概率.

(2)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”,根据题意完成下表,并判断能否有的把握认为“对莫言作品的非常了解”与性别有关?

非常了解

一般了解

合计

男生

女生

合计

注:K2

P(K2k0)

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

【答案】(1)(2)见解析

【解析】试题分析:(1)根据古典概型概率公式求出阅读某莫言作品在篇以上的频率,从而估计该校学生阅读莫言作品超过50篇概率;(2)利用公式K2求得 ,与邻界值比较,即可得到结论.

试题解析:(1)由抽样调查阅读莫言作品在50篇以上的频率为,据此估计该校学生阅读莫言作品超过50篇的概率约为

(2)

非常了解

一般了解

合计

男生

30

20

50

女生

25

25

50

合计

55

45

100

根据列联表数据得

所以没有75%的把握认为对莫言作品的非常了解与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数,在下列条件下,求实数的取值范围.

(1)零点均大于

(2)一个零点大于,一个零点小于

(3)一个零点在内,另一个零点在内.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象经过点,对任意实数满足,且函数的最小值为2

1)求函数的解析式;

2)设函数,其中,求函数在区间上的最小值

3若在区间上,函数的图象恒在函数的图象上方,试确定实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工科院校对AB两个专业的男女生人数进行调查,得到如下的列联表:


专业A

专业B

总计

女生

12

4

16

男生

38

46

84

总计

50

50

100

(1)B专业的女生中随机抽取2名女生参加某项活动,其中女生甲被选到的概率是多少?

(2)能否在犯错误的概率不超过0.05的前提下,认为工科院校中性别专业有关系呢?

注:K2

P(K2k0)

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P是正方体ABCD-A1B1C1D1中BC1上的动点,下列说法:

①AP⊥B1C;②BP与CD1所成的角是60°;③三棱锥的体积为定值;④B1P∥平面D1AC;⑤二面角P-AB-C的平面角为45°.

其中正确说法的个数有 ( )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.

)已知G,H分别为ECFB的中点,求证:GH∥平面ABC

)已知EF=FB=AC=AB=BC.求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解校园安全教育系列活动的成效,对全校3000名学生进行一次安全意识测试,根据测试成绩评定“优秀”、“良好”、“及格”、“不及格”四个等级,现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下所示.

等级

不及格

及格

良好

优秀

得分

频数

6

24

1)求的值;

2)试估计该校安全意识测试评定为优秀的学生人数;

3)已知已采用分层抽样的方法,从评定等级为优秀良好的学生中任选6人进行强化培训;现再从这6人中任选2人参加市级校园安全知识竞赛,求选取的2人中有1人为优秀的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

≥5

保费

0.85a

a

1.25a

1.5a

1.75a

2a

随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:

出险次数

0

1

2

3

4

≥5

频数

60

50

30

30

20

10

(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;

(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;

(3)求续保人本年度平均保费的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数,且x=-1处取得极大 2

1)求f(x)的解析式;

2)过点A(1,t) 可作函数f(x)图像的三条切线,求实数t的取值范围;

3)若对于任意的恒成立,求实数m取值范围

查看答案和解析>>

同步练习册答案