精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.

)已知G,H分别为ECFB的中点,求证:GH∥平面ABC

)已知EF=FB=AC=AB=BC.求二面角的余弦值.

【答案】)见解析;(

【解析】试题分析:()取中点,连结,推导出平面平面,由此能证明平面;()由,知,以为原点, 轴, 轴, 轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.

试题解析:()连结,取的中点,连结在上底面内, 不在上底面内, 上底面,………………2

平面,又平面平面

平面………………4

所以平面平面,由平面平面………………5

()连结………………6

为原点,分别以轴建立空间直角坐标系,

于是有

可得平面中的向量,于是得平面的一个法向量………………9

又平面的一个法向量………………10

设二面角,则

二面角的余弦值为………………12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,直线过定点

(1)若直线与圆相切,求直线的方程。

(2)若直线与圆相交于两点,且,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,直线的两个交点间的距离为.

)求椭圆的方程;

)分别过满足,设的上半部分分别交于两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)求方程的实数解;

)如果数列满足),是否存在实数,使得对所有的都成立?证明你的结论.

)在()的条件下,设数列的前项的和为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】莫言是中国首位获得诺贝尔文学奖的文学家,国人欢欣鼓舞。某高校文学社从男女生中各抽取50名同学调查对莫言作品的了程度,结果如下:

阅读过莫言的作品数(篇)

0~25

26~50

51~75

76~100

101~130

男生

3

6

11

18

12

女生

4

8

13

15

10


(1)试估计该学校学生阅读莫言作品超过50篇的概率.

(2)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”,根据题意完成下表,并判断能否有的把握认为“对莫言作品的非常了解”与性别有关?

非常了解

一般了解

合计

男生

女生

合计

注:K2

P(K2k0)

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,嵩山上原有一条笔直的山路BC,现在又新架设了一条索道AC,小李在山脚B处看索道AC,发现张角∠ABC=120°;从B处攀登400米到达D处,回头看索道AC,发现张角∠ADC=150°;从D处再攀登800米方到达C处,则索道AC的长为________米.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市理论预测2000年到2004年人口总数与年份的关系如下表所示

年份200(年)

0

1

2

3

4

人口数 (十万)

5

7

8

11

19

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;

(3)据此估计2005年该城市人口总数.

参考公式: 用最小二乘法求线性回归方程系数公式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,一个圆柱形乒乓球筒,高为厘米,底面半径为厘米.球筒的上底和下底分别粘有一个乒乓球,乒乓球与球筒底面及侧面均相切(球筒和乒乓球厚度忽略不计).一个平面与两乒乓球均相切,且此平面截球筒边缘所得的图形为一个椭圆,则该椭圆的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某几何体的三视图,则该几何体的体积为( )

A. 12 B. 15 C. 18 D. 21

查看答案和解析>>

同步练习册答案