精英家教网 > 高中数学 > 题目详情
已知等比数列{an}前n项和Sn=3n+1+a,数列{bn}的通项公式为bn=an,bn的前n项和为(  )
A、-
3
4
[1-(-3)n]
B、-
3
4
[1-(-3)n+1]
C、
a(1-an)
1-a
D、-n
分析:由数列{an}的前和公式sn=3n+1+a结合递推公式an=
Sn-Sn-1  n≥ 2
S1            n=1
可得数列的通项公式,由数列为等比数列可得a的值,代入求出{bn}为等比数列,运用等比数列的求和公式求出结果
解答:解:因为Sn=3n+1+a,
所以n≥2,an=Sn-Sn-1=3n+1-3n=2•3n
 又因为数列{an}为等比数列,a1=S1=9+a适合上式
所以9+a=6,a=-3,bn=(-3)n
所以数列{bn}以-3为首项,以-3为公比的等比数列,设前n和为Sn
Sn=
-3[1-(-3) n]
1+3
= -
3
4
[1-(-3) n]

故选 A
点评:本题主要考查等比数列的定义:
a2
a1
a3
a2
=…=
an
an-1
=q
,由递推公式求通项,等比数列的求和公式.关键要注意求数列{an}的通项公式时要验证n=1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案