精英家教网 > 高中数学 > 题目详情
11.有以下四个命题
①过球面上任意两点只能作球的一个大圆
②球的任意两个大圆的交点的连线是球的直径
③用不过球心的截面截球,球心和截面圆心的连线垂直于截面
④球是与定点的距离等于定长的所有点的集合
则命题中正确的是②③  (将正确的命题序号填在横线上)

分析 根据球的性质分别进行判断即可.

解答 解:①当两点为球的直径的两个端点时,过球面上任意两点可以作无数的球大圆,故①错误,
②球的任意两个大圆的交点的连线是球的直径,正确,
③用不过球心的截面截球,球心和截面圆心的连线垂直于截面,正确,
④在空间中,满足到定点的距离等于定长的所有点的集合为球面,故球是与定点的距离等于定长的所有点的集合,错误,
故正确是②③,
故答案为:②③

点评 本题主要考查命题的真假判断,涉及球的性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.对于序列A0:a0,a1,a2,…,an(n∈N*),实施变换T得序列A1:a1+a2,a2+a3,…,an-1+an,记作A1=T(A0):对A1继续实施变换T得序列A2=T(A1)=T(T(A0)),记作A2=T2(A0);…;An-1=Tn-1(A0).最后得到的序列An-1只有一个数,记作S(A0).
(Ⅰ)若序列A0为1,2,3,求S(A0);
(Ⅱ)若序列A0为1,2,…,n,求S(A0);
(Ⅲ)若序列A和B完全一样,则称序列A与B相等,记作A=B,若序列B为序列A0:1,2,…,n的一个排列,请问:B=A0是S(B)=S(A0)的什么条件?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设命题P:关于x的不等式${a^{{x^2}-ax-2{a^2}}}$>1(a>0且a≠1)的解集为{x|-a<x<2a};命题Q:f(x)=lg(ax2-x+a)的值域为R.如果P且Q为真,则实数a的取值范围是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(Ⅰ)已知数列{an}的前n项和Sn=3n2-2n,求证:数列{an}成等差数列;
(Ⅱ)设{bn}是首项b1=3,公比为q的等比数列,且b1,b2,b3成等差数列,求{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设$f(x)=\left\{{\begin{array}{l}{1-{x^2},x≤1}\\{lnx,x>1}\end{array}}\right.$,若方程f(x)=kx-$\frac{1}{2}$恰有四个不相等的实数根,则实数k的取值范围是(  )
A.$(\frac{1}{2},\frac{1}{{\sqrt{e}}}$)B.(2,e)C.($\sqrt{e}$,2)D.$(\frac{1}{2},\sqrt{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列an的前n项和${S_n}=-{a_n}-{(\frac{1}{2})^{n-1}}+2(n∈{N^*})$,则数列{2nan}的前100项的和为5050.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.${∫}_{1}^{e}lnxdx$=(  )
A.$\frac{1}{e}$-1B.e-1C.1D.e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=Asin(ωx+φ)(其中$A>0,|φ|<\frac{π}{2}$)的图象如图所示,为了得到$g(x)=cos({2x-\frac{π}{2}})$的图象,只需将f(x)的图象(  )
A.向左平移$\frac{π}{3}$个长度单位B.向右平移$\frac{π}{3}$个长度单位
C.向左平移$\frac{π}{6}$个长度单位D.向右平移$\frac{π}{6}$个长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果椭圆的两焦点为F1(0,-1)和F2(0,1),P是椭圆上的一点,且|PF1|,|F1F2|,|PF2|成等差数列,那么椭圆的方程是(  )
A.$\frac{x^2}{16}+\frac{y^2}{9}=1$B.$\frac{x^2}{16}+\frac{y^2}{12}=1$C.$\frac{x^2}{4}+\frac{y^2}{3}=1$D.$\frac{x^2}{3}+\frac{y^2}{4}=1$

查看答案和解析>>

同步练习册答案