精英家教网 > 高中数学 > 题目详情
2.设命题P:关于x的不等式${a^{{x^2}-ax-2{a^2}}}$>1(a>0且a≠1)的解集为{x|-a<x<2a};命题Q:f(x)=lg(ax2-x+a)的值域为R.如果P且Q为真,则实数a的取值范围是(0,$\frac{1}{2}$].

分析 由复合命题P且Q的真假,先判断出简单命题P、Q均为真命题.再依命题P为真命题对a分类讨论确定大致范围,指数不等式求解可采用单调性法.命题Q中,对数函数值域为R可转化为真数能取到(0,+∞)所有值.

解答 ∵P且Q为真命题,∴命题P与命题Q均为真命题.
若a>1,命题P的不等式可转化为x2-ax-2a2>0,解集为:{x|x<-a或x>2a},不合题意.
若0<a<1,命题P成立.此时只需满足命题Q成立即可.
命题Q:函数的值域为R,则真数ax2-x+a能取到所有的正数,即ax2-x+a≤0有解
∴△≥0 即1-4a2≥0解得-$-\frac{1}{2}≤a≤\frac{1}{2}$,又∵0<a<1
所以答案为(0,$\frac{1}{2}$]

点评 考查了复合命题的真假问题,指对数函数的性质.考查函数思想、化归思想.属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.函数y=x2-2ax-4,x∈[0,3],(a∈R)
(1)若a=1,求该函数在x∈[0,3]上的最大值和最小值;
(2)若该函数在[0,3]上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知{an}为等差数列,{bn}为正项等比数列,公比q≠1,若a1=b1,a9=b9,则(  )
A.a5=b5B.a5>b5C.a5<b5D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.方程$\sqrt{x}$=3sinx的根的个数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}2x-1,x≤1\\ lnx,x>1\end{array}$,则f(f($\sqrt{e}$))=(  )
A.1B.-1C.0D.e

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.复数z=2+i的共轭复数是2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在△ABC中,D、E分别是AB和BC的三等分点,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{DE}$=(  )
A.$\overrightarrow{DE}$=$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$B.$\overrightarrow{DE}$=$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$C.$\overrightarrow{DE}$=$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$D.$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.有以下四个命题
①过球面上任意两点只能作球的一个大圆
②球的任意两个大圆的交点的连线是球的直径
③用不过球心的截面截球,球心和截面圆心的连线垂直于截面
④球是与定点的距离等于定长的所有点的集合
则命题中正确的是②③  (将正确的命题序号填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$y=\sqrt{1-{{(\frac{1}{2})}^x}}$的定义域为集合A,函数$y=\frac{1}{{{{log}_3}(3x-2)}}$的定义域为集合B.
(1)求集合A,B;
(2)求A∩B,A∪B.

查看答案和解析>>

同步练习册答案