精英家教网 > 高中数学 > 题目详情
14.如图,在△ABC中,D、E分别是AB和BC的三等分点,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{DE}$=(  )
A.$\overrightarrow{DE}$=$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$B.$\overrightarrow{DE}$=$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$C.$\overrightarrow{DE}$=$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$D.$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$

分析 根据平面向量的线性表示与运算性质,利用$\overrightarrow{DB}$与$\overrightarrow{BE}$表示出$\overrightarrow{DE}$即可.

解答 解:△ABC中,D、E分别是AB和BC的三等分点,
∴$\overrightarrow{DB}$=$\frac{2}{3}$$\overrightarrow{AB}$=$\frac{2}{3}$$\overrightarrow{a}$,
$\overrightarrow{BE}$=$\frac{1}{3}$$\overrightarrow{BC}$=$\frac{1}{3}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{1}{3}$($\overrightarrow{b}$-$\overrightarrow{a}$),
∴$\overrightarrow{DE}$=$\overrightarrow{DB}$+$\overrightarrow{BE}$=$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$($\overrightarrow{b}$-$\overrightarrow{a}$)=$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$.
故选:A.

点评 本题考查了平面向量的线性表示与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.(1)在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,求含x3的项的系数;
(2)若(2-x)6展开式中第二项小于第一项,但不小于第三项,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,则不等式xf(x-1)>0的解集是(  )
A.(-3,-1)B.(-3,1)∪(2,+∞)C.(-3,0)∪(3,+∞)D.(-1,0)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设命题P:关于x的不等式${a^{{x^2}-ax-2{a^2}}}$>1(a>0且a≠1)的解集为{x|-a<x<2a};命题Q:f(x)=lg(ax2-x+a)的值域为R.如果P且Q为真,则实数a的取值范围是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在正方体ABCD-A1B1C1D1中,棱长为a,E为棱CC1上的动点.
(1)求异面直线BD与A1E所成的角;
(2)确定E点的位置,使平面A1BD⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(Ⅰ)已知数列{an}的前n项和Sn=3n2-2n,求证:数列{an}成等差数列;
(Ⅱ)设{bn}是首项b1=3,公比为q的等比数列,且b1,b2,b3成等差数列,求{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设$f(x)=\left\{{\begin{array}{l}{1-{x^2},x≤1}\\{lnx,x>1}\end{array}}\right.$,若方程f(x)=kx-$\frac{1}{2}$恰有四个不相等的实数根,则实数k的取值范围是(  )
A.$(\frac{1}{2},\frac{1}{{\sqrt{e}}}$)B.(2,e)C.($\sqrt{e}$,2)D.$(\frac{1}{2},\sqrt{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.${∫}_{1}^{e}lnxdx$=(  )
A.$\frac{1}{e}$-1B.e-1C.1D.e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.抛2颗骰子,则向上点数不同的概率为(  )
A.$\frac{5}{6}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案