精英家教网 > 高中数学 > 题目详情
如图所示,在直三棱柱ABC-A1B1C1中,AB=BC=BB1,D为AC的中点.
(I)求证:B1C平面A1BD;
(Ⅱ)若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1
(Ⅲ)在(II)的条件下,求二面角B-A1C1-D的大小.
精英家教网

精英家教网
(I)证明:连结AB1交A1B于E,连ED.
∵ABC-A1B1C1是三棱柱中,且AB=BB1
∴侧面ABB1A是一正方形.
∴E是AB1的中点,又已知D为AC的中点.
∴在△AB1C中,ED是中位线.
∴B1CED.∴B1C平面A1BD.…(4分)
(II)证明:∵AC1⊥平面ABD,∴AC1⊥A1B,
又∵侧面ABB1A是一正方形,∴A1B⊥AB1
∴A1B⊥平面AB1C1.∴A1B⊥B1C1
又∵ABC-A1B1C1是直三棱柱,∴BB1⊥B1C1
∴B1C1⊥平面ABB1A1.…(8分)
(III)由上问知B1C1⊥平面ABB1A1.∴BC⊥平面ABB1A1.∴BC⊥AB.
以BA、BC、BB1分别为x轴、y轴、z轴建立空间直角坐标系.
不妨设AB=BC=BB1=1,则显然B、D、A1、C1各点的坐标分别是
B(0,0,0),D(
1
2
1
2
,0
),A1(1,0,1),C1(0,1,1).
BA1
=(1,0,1),
BC1
=(0,1,1),
BD
=(
1
2
1
2
,0).
显然,
BD
就是平面A1C1D的法向量.
设平面BA1C1的法向量为
n
=(x,y,z),则
n
BA1
=0,
n
BC1
=0.
∴(x,y,z)•(1,0,1)=0,(x,y,z)•(0,1,1)=0.
∴x=y=-z.令x=1,则
n
=(1,1,-1).
n
BD
所成的角为θ,则cosθ=
n
BD
|
n
||
BD
|
=…=
6
3
.

由图形可知二面角B-A1C1-D的平面角为锐角,
∴二面角B-A1C1-D的大小为arccos
6
3
.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AA1=AC=BC=2,D、E、F分别是AB、AA1、CC1的中点,P是CD上的点.
(1)求直线PE与平面ABC所成角的正切值的最大值;
(2)求证:直线PE∥平面A1BF;
(3)求直线PE与平面A1BF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直线B′C与平面ABC成30°角.
(1)求证:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,底面是∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=
a或2a
a或2a
时,CF⊥平面B1DF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点.
(Ⅰ)求证:B1C1⊥平面ABB1A1
(Ⅱ)设E是CC1的中点,试求出A1E与平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1=BC,AC1⊥平面A1BD,D为AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求证:B1C1⊥平面ABB1A1
(3)在CC1上是否存在一点E,使得∠BA1E=45°,若存在,试确定E的位置,并判断平面A1BD与平面BDE是否垂直?若不存在,请说明理由.

查看答案和解析>>

同步练习册答案