精英家教网 > 高中数学 > 题目详情
10.已知集合A={y|y=x2,x∈R},N={y|y=-2x2+3,x∈R},求A∩B,A∪B.

分析 求出集合的等价条件,根据集合的基本运算进行求解即可.

解答 解:A={y|y=x2,x∈R}={y|y≥0},
N={y|y=-2x2+3,x∈R}={y|y≤3},
A∩B={y|0≤y≤3},A∪B=R.

点评 本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.长度为3的线段AB的端点A、B分别在x轴、y轴上运动,若点P满足$\overrightarrow{BP}$=2$\overrightarrow{PA}$.设动点P轨迹为曲线C.
(I)求曲线C的方程;
(Ⅱ)点P在曲线C上,点F的坐标为($\sqrt{3}$,0),若点Q是直线l:x=$\frac{4\sqrt{3}}{3}$上任意一点,且满足PF⊥FQ,是判断直线PQ与曲线C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x2-x-2<0},B={x|$\frac{1}{x-1}$≤1},则A∩B=(  )
A.(-1,1]B.(-1,1)C.D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=$\frac{1}{2}$ex+x-6的零点在区间(n,n+1)(n∈N*)内,则n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图所示,在△ABC中,点O是BC上的点,过O的直线MN分别交直线AB,AC于不同的两点M,N,若$\overrightarrow{AB}=2\overrightarrow{AM}$,$\overrightarrow{AC}=\frac{2}{3}\overrightarrow{AN}$,$\overrightarrow{AO}=m\overrightarrow{AB}+n\overrightarrow{AC}$(m>0,n>0),则6m+2n的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=log${\;}_{\frac{1}{2}}$(x2-ax+3a)在区间[2,+∞)上为减函数,则实数a的取值范围是-4<a≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设a=($\frac{7}{9}$)${\;}^{-\frac{1}{4}}$,b=($\frac{9}{7}$)${\;}^{\frac{1}{5}}$,c=log2$\frac{7}{9}$,则a,b,c的大小顺序是a>b>c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义在R上的奇函数f(x)满足f(x+1)=f(1-x),且x∈[0,1]时,f(x)=$\sqrt{2x}$,则f(11.5)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i是虚数单位,则满足z-i=|3+4i|的复数z在复平面上对应点所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案