分析 利用对数函数和指数函数的性质求解.
解答 解:∵$a=({\frac{7}{9})}^{-\frac{1}{4}}$,根据公式$(\frac{a}{b})^{-\frac{n}{m}}=(\frac{b}{a})^{\frac{n}{m}}$
∴$a=(\frac{9}{7})^{\frac{1}{4}}$,
∵a,b是指数函数,∴a>0,b>0,
由指数函数的性质可知,底数大于1时,是增函数,指数越大,函数值越大.
∵$\frac{9}{7}>1,\frac{1}{4}>\frac{1}{5}$,
∴$(\frac{9}{7})^{\frac{1}{4}}>(\frac{9}{7})^{\frac{1}{5}}$,即a>b>0;
由对数函数的性质可知,底数大于1时,是增函数,真数越大,函数值越大.
则:c=log2$\frac{7}{9}$$<lo{{g}_{2}}^{1}=0$,
∴0>c,
所以a>b>c,
故答案为:a>b>c.
点评 本题考查了利用指数的运算化简及指数函数和对数函数的性质比较大小,学会利用中间值:0,1进行转化比较是关键.属于基础题,
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{π}{3}$,$\frac{π}{2}$] | B. | [$\frac{π}{6}$,$\frac{π}{2}$] | C. | [$\frac{π}{6}$,$\frac{π}{3}$] | D. | [$\frac{π}{4}$,$\frac{3π}{8}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c<d | B. | d<a<c<b | C. | a<c<b<d | D. | c<b<a<d |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?p:?x∈R,x2≥sinx | B. | ?p:?x∈R,x2<sinx | C. | ?p:?x∈R,x2≥sinx | D. | ?p:?x∈R,x2≤sinx |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com