精英家教网 > 高中数学 > 题目详情
4.如图,BC是⊙O的直径,AD是平行于BC的弦,过点D作AC的平行线DE,交BA的延长线于点E.
求证:(1)△ABC≌△DCB
(2)DE•DC=AE•BD.

分析 (1)证明∠DBC=∠ACB,即可证明△ABC≌△DCB
(2)证明△AED∽△BAC,可得AE•AC=AB•DE,利用△ABC≌△DCB,可得AB=DC,AC=BD,即可证明DE•DC=AE•BD.

解答 证明:(1)∵AD∥BC,
∴∠ADB=∠DBC,
∵∠ADB=∠ACB,
∴∠DBC=∠ACB
在△ABC和△DCB中,
∵∠BAC=∠DCB,BC=BC,∠DBC=∠ACB,
∴△ABC≌△DCB;
(2)在△AED和△BAC中,
∵AC∥ED,AD∥BC,
∴∠ADE=∠BCA,∠EAD=∠ABC,
∴△AED∽△BAC,
∴$\frac{AE}{AB}=\frac{DE}{AC}$,
∴AE•AC=AB•DE,
∵△ABC≌△DCB,
∴AB=DC,AC=BD,
∴DE•DC=AE•BD.

点评 本题考查了相似三角形的判定与性质、全等三角形的判定与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=-x2+2x+3,x∈[-5,5].若从区间内随机选取一个实数x0,则所选取的实数x0满足f(x0)≤0的概率为(  )
A.0.3B.0.4C.0.5D.0.6

查看答案和解析>>

科目:高中数学 来源:2017届广西陆川县中学高三9月月考数学(文)试卷(解析版) 题型:选择题

设函数,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高二上理周末检测三数学试卷(解析版) 题型:选择题

中,角所对的边分别为满足,则的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高二上理周末检测三数学试卷(解析版) 题型:选择题

中,若,则( )

A.

B.

C.是直角三角形

D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=x2+ax+2在区间[1,5]上至少有一个零点,则实数a的取值范围为(  )
A.(-∞,-2$\sqrt{2}$]B.[-3,-2$\sqrt{2}$]C.[-$\frac{27}{5}$,-2$\sqrt{2}$]D.(-∞,-2$\sqrt{2}$]∪[2$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.正四面体A-BCD中,M和N分别是AD和AB中点,求异面直线CM和DN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a∈R,函数f(x)=x2-a|x-1|.当a<0时,讨论y=f(x)的图象与y=|x-a|的图象的公共点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.①1∉S;②若a∈S,则$\frac{1}{1-a}$∈S.
(1)求证:若a∈S,则1-$\frac{1}{a}$∈S;
(2)若2∈S,则在S中必含有其他的两个数,试求出这两个数;
(3)集合S能否是单元素集?若能,把它求出来;若不能,说明理由;
(4)求证:集合S中至少有三个不同的元素.

查看答案和解析>>

同步练习册答案