| A. | ($\frac{1}{2}$,$\frac{2}{3}$) | B. | [$\frac{1}{3}$,$\frac{2}{3}$) | C. | ($\frac{1}{3}$,$\frac{2}{3}$) | D. | [$\frac{1}{3}$,$\frac{2}{3}$) |
分析 由对任意的x1,x2∈(0,+∞),(x1≠x2),有[f(x1)-f(x2)]•(x1-x2)>0,可得函数f(x)在(0,+∞)上为增函数,则不等式f(2x-1)<f($\frac{1}{3}$)可化为:$\frac{1}{3}$>2x-1>0,解得答案.
解答 解:∵对任意的x1,x2∈(0,+∞),(x1≠x2),有[f(x1)-f(x2)]•(x1-x2)>0,
故函数f(x)在(0,+∞)上为增函数,
则不等式f(2x-1)<f($\frac{1}{3}$)可化为:
$\frac{1}{3}$>2x-1>0,
解得:x∈($\frac{1}{2}$,$\frac{2}{3}$),
故选:A
点评 本题考查的知识点是函数单调性的性质,函数单调性的判断与证明,其中根据已知分析出函数f(x)在(0,+∞)上为增函数,是解答的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x-2}{x-1}$≤0 | B. | $\frac{x-2}{x-1}$=0 | C. | $\frac{x-2}{x-1}$<0 | D. | $\frac{x-2}{x-1}$≥0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com