精英家教网 > 高中数学 > 题目详情

【题目】已知数列为公差不为的等差数列, 为前项和, 的等差中项为,且.令数列的前项和为

1)求

2)是否存在正整数成等比数列?若存在,求出所有的的值;若不存在,请说明理由.

【答案】

)当可以使成等比数列.

【解析】试题分析:(1)由于的等差中项为,可得,又.利用等差数列通项公式将其转化为表示,解方程组求出其值,进而得到,结合通项公式特点可采用裂项相消法求和

2)假设存在正整数mn1mn),使得T1TmTn成等比数列,则,当m=2时,化为,解得一组mn的值满足条件.当m≥3时,由于关于m单调递增,可知,化为5n+27≤0,由于nm1,可知上式不成立

试题解析:()因为为等差数列,设公差为,则由题意得

整理得

所以

所以

)假设存在

由()知, ,所以

成等比,则有

,(1

因为,所以

因为,当时,带入(1)式,得

综上,当可以使成等比数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点在椭圆内,过的直线与椭圆相交于AB两点,且点是线段AB的中点,O为坐标原点.

(Ⅰ)是否存在实数t,使直线和直线OP的倾斜角互补?若存在,求出的值,若不存在,试说明理由;

(Ⅱ)求面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知椭圆,其中分别为其左,右焦点,点是椭圆上一点,,且

(1)当,且时,求的值;

(2)若,试求椭圆离心率的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x+2x
(1)判断函数的奇偶性;
(2)用函数单调性定义证明:f(x)在(0,+∞)上为单调增函数;
(3)若f(x)=52x+3,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有一枚质地均匀的骰子,连续投掷两次,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是7的结果有多少种?
(3)向上的点数之和是7的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有道数学题,其中道选择题, 道填空题,小明从中任取道题,求

1)所取的道题都是选择题的概率

2)所取的道题不是同一种题型的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将数字1,2,3,…, )全部填入一个2行列的表格中,每格填一个数字,第一行填入的数字依次为 ,…, ,第二行填入的数字依次为 ,…, .记

(Ⅰ)当时,若 ,写出的所有可能的取值;

(Ⅱ)给定正整数.试给出 ,…, 的一组取值,使得无论 ,…, 填写的顺序如何, 都只有一个取值,并求出此时的值;

(Ⅲ)求证:对于给定的以及满足条件的所有填法, 的所有取值的奇偶性相同.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)讨论函数的单调区间;

(2)求证:

(3)求证:当时, 恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出了四个类比推理:

为实数,若;类比推出: 为复数,若.

若数列是等差数列, ,则数列也是等差数列类比推出:若数列是各项都为正数的等比数列 则数列也是等比数列.

类比推出:若为三个向量,则.

④ 若圆的半径为,则圆的面积为;类比推出:若椭圆的长半轴长为,短半轴长为,则椭圆的面积为.上述四个推理中,结论正确的是( )

A. ① ② B. ② ③ C. ① ④ D. ② ④

查看答案和解析>>

同步练习册答案