【题目】已知数列为公差不为的等差数列, 为前项和, 和的等差中项为,且.令数列的前项和为.
(1)求及;
(2)是否存在正整数成等比数列?若存在,求出所有的的值;若不存在,请说明理由.
【答案】(Ⅰ),
(Ⅱ)当可以使成等比数列.
【解析】试题分析:(1)由于和的等差中项为,可得,又.利用等差数列通项公式将其转化为表示,解方程组求出其值,进而得到,结合通项公式特点可采用裂项相消法求和;
(2)假设存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列,则,当m=2时,化为,解得一组m,n的值满足条件.当m≥3时,由于关于m单调递增,可知,化为5n+27≤0,由于n>m>1,可知上式不成立
试题解析:(Ⅰ)因为为等差数列,设公差为,则由题意得
整理得
所以
由
所以
(Ⅱ)假设存在
由(Ⅰ)知, ,所以
若成等比,则有
,(1)
因为,所以,
因为,当时,带入(1)式,得;
综上,当可以使成等比数列.
科目:高中数学 来源: 题型:
【题目】已知点在椭圆内,过的直线与椭圆相交于A,B两点,且点是线段AB的中点,O为坐标原点.
(Ⅰ)是否存在实数t,使直线和直线OP的倾斜角互补?若存在,求出的值,若不存在,试说明理由;
(Ⅱ)求面积S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x+2﹣x ,
(1)判断函数的奇偶性;
(2)用函数单调性定义证明:f(x)在(0,+∞)上为单调增函数;
(3)若f(x)=52﹣x+3,求x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有一枚质地均匀的骰子,连续投掷两次,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是7的结果有多少种?
(3)向上的点数之和是7的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将数字1,2,3,…, ()全部填入一个2行列的表格中,每格填一个数字,第一行填入的数字依次为, ,…, ,第二行填入的数字依次为, ,…, .记.
(Ⅰ)当时,若, , ,写出的所有可能的取值;
(Ⅱ)给定正整数.试给出, ,…, 的一组取值,使得无论, ,…, 填写的顺序如何, 都只有一个取值,并求出此时的值;
(Ⅲ)求证:对于给定的以及满足条件的所有填法, 的所有取值的奇偶性相同.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面给出了四个类比推理:
①为实数,若则;类比推出: 为复数,若则.
② 若数列是等差数列, ,则数列也是等差数列;类比推出:若数列是各项都为正数的等比数列, ,则数列也是等比数列.
③ 若则; 类比推出:若为三个向量,则.
④ 若圆的半径为,则圆的面积为;类比推出:若椭圆的长半轴长为,短半轴长为,则椭圆的面积为.上述四个推理中,结论正确的是( )
A. ① ② B. ② ③ C. ① ④ D. ② ④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com