精英家教网 > 高中数学 > 题目详情
已知椭圆的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为,倾斜角为的直线过点.
(1)求该椭圆的方程;
(2)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得关于直线对称,若存在,求出点的坐标,若不存在,说明理由.
(1);(2)抛物线上存在一点,使得关于直线对称.

试题分析:(1)求椭圆的方程,可利用待定系数法求出的值即可,首先确定抛物线的焦点与准线方程为,利用椭圆焦点与抛物线的焦点重合,得,且截抛物线的准线所得弦长为,得交点为,建立方程,求出的值,即可求得椭圆的方程;(2)根据倾斜角为的直线过点,可得直线的方程,由(1)知椭圆的另一个焦点为,利用关于直线对称,利用对称,可求得的坐标,由此可得结论.
试题解析:(1)抛物线的焦点为,准线方程为
∴    ①                         2分
又椭圆截抛物线的准线所得弦长为
∴ 得上交点为,∴    ②         4分
由①代入②得,解得(舍去),
从而 
∴该椭圆的方程为该椭圆的方程为         6分
(2)∵ 倾斜角为的直线过点
∴ 直线的方程为,即,         7分
由(1)知椭圆的另一个焦点为,设关于直线对称,则得  ,                     9分
解得,即,                    2分
满足,故点在抛物线上。所以抛物线上存在一点,使得关于直线对称。             13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上且过点,离心率是
(1)求椭圆的标准方程;
(2)直线过点且与椭圆交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点为椭圆的右焦点,且椭圆的长轴长为4,M、N是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点满足:,直线的斜率之积为,证明:存在定点使
为定值,并求出的坐标;
(3)若在第一象限,且点关于原点对称,垂直于轴于点,连接 并延长交椭圆于点,记直线的斜率分别为,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的两个焦点分别为F1,F2,离心率为,且过点(2,).
(1)求椭圆C的标准方程;
(2)M,N,P,Q是椭圆C上的四个不同的点,两条都不和x轴垂直的直线MN和PQ分别过点F1,F2,且这两条直线互相垂直,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆与双曲线x2-y2=0有相同的焦点,且离心率为.
(1)求椭圆的标准方程;
(2)过点P(0,1)的直线与该椭圆交于A,B两点,O为坐标原点,若=2,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆=1(a>b>0)的离心率e=,右焦点为F(c,0),方程ax2+2bx+c=0的两个实数根分别是x1和x2,则点P(x1,x2)到原点的距离为(  )
A.B.
C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆和双曲线有相同的焦点是它们的一个交点,则的形状是(   )
A.锐角三角形B.直角三角形
C.钝角三角形D.随的变化而变化

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

F1F2分别是椭圆Ex2=1(0<b<1)的左、右焦点,过F1的直线lE相交于AB两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求|AB|;
(2)若直线l的斜率为1,求b的值.

查看答案和解析>>

同步练习册答案