精英家教网 > 高中数学 > 题目详情

【题目】已知集合P={x|x2﹣2x﹣8≤0},Q={x|x≥a},(RP)∪Q=R,则a的取值范围是(
A.(﹣2,+∞)
B.(4,+∞)
C.(﹣∞,﹣2]
D.(﹣∞,4]

【答案】C
【解析】解:∵集合P={x|x2﹣2x﹣8≤0}={x|﹣2≤x≤4}, ∴CRP={x|x<﹣2或x>4},
∵Q={x|x≥a},(RP)∪Q=R,
∴a≤﹣2,故a的取值范围是(﹣∞,﹣2].
故选为:C.
【考点精析】关于本题考查的交、并、补集的混合运算,需要了解求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知实数a,b满足2a=3,3b=2,则函数f(x)=ax+x﹣b的零点所在的区间是(
A.(﹣2,﹣1)
B.(﹣1,0)
C.(0,1)
D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若点(1,3)和(﹣4,﹣2)在直线2x+y+m=0的两侧,则m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是(  )
A.[﹣2,2]
B.[﹣1,1]
C.[0,4]
D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列等式:13+23=32 , 13+23+33=62 , 13+23+33+43=102 , …,根据上述规律,第五个等式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用反证法证明命题:“三角形的内角至多有一个钝角”,正确的假设是(
A.三角形的内角至少有一个钝角
B.三角形的内角至少有两个钝角
C.三角形的内角没有一个钝角
D.三角形的内角没有一个钝角或至少有两个钝角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的方程为y=﹣x+1,则该直线l的倾斜角为(  )
A.30°
B.45°
C.60°
D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过圆x2+(y﹣3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是(
A.x+y﹣2=0
B.x﹣y+2=0
C.x+y﹣3=0
D.x﹣y+3=0

查看答案和解析>>

同步练习册答案