精英家教网 > 高中数学 > 题目详情
20.若f(x)=x3,f′(x0)=3,则x0的值为(  )
A.1B.-1C.1或-1D.$\sqrt{3}$或-$\sqrt{3}$

分析 先对函数f(x)进行求导,然后将x0代入导函数建立等量关系,求出x0即可

解答 解:∵f(x)=x3
∴f′(x)=3x2
则f′(x0)=3x02=3,
解的x0=±1,
故选:C.

点评 本题主要考查了导数的运算,以及导数的几何意义,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知直角三角形周长为2,求该三角形面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=x5+x3+x2+x+1,求f(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.四封信投入3个不同的信箱,其不同的投信方法有81种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列区间是函数y=2|cosx|的单调递减区间的是(  )
A.(0,π)B.(-$\frac{π}{2}$,0)C.($\frac{3π}{2}$,2π)D.(-π,-$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列$\left\{{a_n}\right\}满足{a_1}=1,{a_2}=2,{a_{n+2}}=(1+{cos^2}\frac{nπ}{2}){a_n}+{sin^2}\frac{nπ}{2}$,n=1,2,3,….
(1)求a3,a4并求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{2n-1}}{{a}_{2n}}$,Tn=b1+b2+…+bn试比较|Tn-2|与$\frac{8}{(n+1)^{2}}$的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列中,a4=1,a7+a9=16,则a12的值是(  )
A.15B.30C.31D.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知直四棱柱ABCD-A1B1C1D1中,AA1=2,底面ABCD是直角梯形,A是直角,AB∥CD,AB=4,AD=2,DC=1,求异面直线BC1与DC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(1,1)=1,f(m,n)∈N+(m,n∈N+),且对任意m,n∈N+,都有:
(1)f(m,n+1)=f(m,n)+2;
(2)f(m+1,1)=2f(m,1)给出以下三个结论:①f(1,5)=9; ②f(5,1)=16; ③f(5,6)=26.
其中正确的个数为(  )
A.3B.2C.1D.0
51234

查看答案和解析>>

同步练习册答案