精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若函数存在极小值点,求的取值范围;

(2)当时,证明:

【答案】(1)(2) 证明见解析.

【解析】

1)求函数的导数,结合函数极值和导数之间的关系进行讨论求解即可;

2)求函数的导数,讨论x的取值范围,结合函数单调性和最值之间的关系进行证明即可.

1)由题意知,函数的定义域为

.

①当时,令,解得

时,

时,

是函数的极小值点,满足题意.

②当时,令

,解得

时,

时,

,即时,

恒成立,

上单调递增,无极值点,不满足题意.

,即时,

上单调递增,

上恰有一个零点

的极小值点,满足题意,

综上,.

2)当

①当,则

.

②当时,令

上是增函数,

上单调递增,

上单调递增,

时,成立,

综上,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下面给出了根据我国2012~2018年水果人均占有量y(单位:kg)和年份代码x绘制的散点图(2012~2018年的年份代码x分别为1~7).

1)根据散点图相应数据计算得,求y关于x的线性回归方程;

2)估计我国2023年水果人均占有量是多少?(精确到1kg).

附:回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上单调递增,求实数的取值范围;

(2)当时,若方程有两个不等实数根,求实数的取值范围,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数5个零点,则实数的取值范围是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,, 是等边三角形,E是PA的中点,.

(1)求证:

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中装有四个形状大小完全相同的球,球的编号分别为1234.

1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;

2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的焦距为2,左顶点与上顶点连线的斜率为

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)过点Pm0)作圆x2+y21的一条切线l交椭圆CMN两点,当|MN|的值最大时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设曲线 ,点的焦点,过点作斜率为1的直线与曲线交于两点,点的横坐标的倒数和为-1.

(1)求曲线的标准方程;

(2)过焦点作斜率为的直线交曲线两点,分别以点为切点作曲线的切线相交于点,过点轴的垂线交轴于点,求三角形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求曲线处的切线方程;

(Ⅱ)求的单调区间;

(Ⅲ)设,若对于任意,总存在,使得成立,求的取值范围.

查看答案和解析>>

同步练习册答案