【题目】平面直角坐标系中,直线的参数方程为,(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出直线的极坐标方程与曲线的直角坐标方程;
(2)已知与直线平行的直线过点,且与曲线交于两点,试求.
科目:高中数学 来源: 题型:
【题目】扬州大学数学系有6名大学生要去甲、乙两所中学实习,每名大学生都被随机分配到两所中学的其中一所.
(1)求6名大学生中至少有1名被分配到甲学校实习的概率;
(2)设,分别表示分配到甲、乙两所中学的大学生人数,记,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数. 若曲线y=在点P(e,f(e))处的切线方程为y=2x-e(为自然对数的底数).
(Ⅰ)求函数的单调区间;
(Ⅱ)若,试比较与的大小,并予以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的拆线图.
(1)由拆线图可以看出,可用线性回归模型拟合月度市场占有率与月份代码之间的关系.求关于的线性回归方程,并预测公司2017年4月份(即时)的市场占有率;
(2)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:
车型 报废年限 | 1年 | 2年 | 3年 | 4年 | 总计 |
| 20 | 35 | 35 | 10 | 100 |
| 10 | 30 | 40 | 20 | 100 |
经测算,平均每辆单车每年可以带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整年,且以频率作为每辆单车使用寿命的概率.如果你是 公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?
(参考公式:回归直线方程为,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地一商场记录了月份某天当中某商品的销售量(单位:)与该地当日最高气温(单位:)的相关数据,如下表:
(1)试求与的回归方程;
(2)判断与之间是正相关还是负相关;若该地月某日的最高气温是,试用所求回归方程预测这天该商品的销售量;
(3)假定该地月份的日最高气温,其中近似取样本平均数,近似取样本方差,试求.
附:参考公式和有关数据,,,若,则,且.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,圆的参数方程为 (为参数),圆与圆外切于原点,且两圆圆心的距离,以坐标原点为极点, 轴正半轴为极轴建立极坐标系.
(1)求圆和圆的极坐标方程;
(2)过点的直线与圆异于点的交点分别为点,与圆异于点的交点分别为点,且,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数再取整,绘制成如下茎叶图,规定不低于85分(百分制)为优秀,甲班同学成绩的中位数为74.
(1)求的值和乙班同学成绩的众数;
(2)完成表格,若有以上的把握认为“数学成绩优秀与教学改革有关”的话,那么学校将扩大教学改革面,请问学校是否要扩大改革面?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com