【题目】已知函数
,若方程
有五个不同的实数根,则
的取值范围是( )
A.
B.
C.
D. ![]()
【答案】B
【解析】
由方程的解与函数图象的交点问题得:方程f(﹣x)=﹣f(x)有五个不同的实数根等价于y=f(x)的图象与y=g(x)的图象有5个交点,作图可知,只需y=ax与曲线y=lnx在第一象限由两个交点即可,利用导数求切线方程得:设过原点的直线与y=lnx切于点P(x0,y0),得lnx0=1,即f′(e)
,即过原点的直线与y=lnx相切的直线方程为y
x,即所求a的取值范围为0
,得解.
设g(x)=﹣f(﹣x),则y=g(x)的图象与y=f(x)的图象关于原点对称,
方程f(﹣x)=﹣f(x)有五个不同的实数根等价于函数y=f(x)的图象与y=g(x)的图象有5个交点,
由图可知,只需y=ax与曲线y=lnx在第一象限有两个交点即可,
设过原点的直线与y=lnx切于点P(x0,y0),
由f′(x)
,
则y=lnx的切线为y﹣lnx0
(x﹣x0),
又此直线过点(0,0),
所以lnx0=1,
所以x0=e,
即f′(e)
,
即过原点的直线与y=lnx相切的直线方程为y
x,
即所求a的取值范围为0
,
故选:B.
![]()
科目:高中数学 来源: 题型:
【题目】某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:
,
,
,
,
,
,
后得到如图的频率分
布直方图.
![]()
(1)求图中实数
的值;
(2)若该校高一年级共有学生1000人,试估计该校高一年级期中考试数学成绩不低于60分的人数.
(3)若从样本中数学成绩在
,
与
,
两个分数段内的学生中随机选取2名学生,试用列举法求这2名学生的数学成绩之差的绝对值大于10的槪率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】曲线
的参数方程为
(t为参数),以原点为极点,
轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线
关于
对称.
(1)求
极坐标方程,
直角坐标方程;
(2)将
向左平移4个单位长度,按照
变换得到
与两坐标轴交于
两点,
为
上任一点,求
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位共有员工45人,其中男员工27人,女员工18人.上级部门为了对该单位员工的工作业绩进行评估,采用按性别分层抽样的方法抽取5名员工进行考核.
(1)求抽取的5人中男、女员工的人数分别是多少;
(2)考核前,评估小组从抽取的5名员工中,随机选出3人进行访谈.求选出的3人中有1位男员工的概率;
(3)考核分笔试和答辩两项.5名员工的笔试成绩分别为78,85,89,92,96;结合答辩情况,他们的考核成绩分别为95,88,102,106,99.这5名员工笔试成绩与考核成绩的方差分别记为
,试比较
与
的大小.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下面四个命题:
①“直线
平面
内所有直线”的充要条件是“
平面
”;
②“直线
直线
”的充要条件是“
平行于
所在的平面”;
③“直线
,
为异面直线”的充分不必要条件是“直线
,
不相交”;
④“平面
平面
”的必要不充分条件是“
内存在不共线三点到
的距离相等”.
其中正确命题的序号是____________________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点
为椭圆
的左焦点,直线
被椭圆
截得弦长为
.
(1)求椭圆
的方程;
(2)圆
与椭圆
交于
两点,
为线段
上任意一点,直线
交椭圆
于
两点
为圆
的直径,且直线
的斜率大于
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com