精英家教网 > 高中数学 > 题目详情

【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:我羊食半马.马主曰:我马食半牛.今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:我羊所吃的禾苗只有马的一半.马主人说:我马所吃的禾苗只有牛的一半.打算按此比例偿还,他门各应偿还多少?该问题中,1斗为10升,则羊主人应偿还多少升粟?(

A.B.C.D.

【答案】C

【解析】

设牛、马、羊所吃禾苗分别为是公比为的等比数列,根据等比数列的求和公式求出首项,再根据等比数列的通项公式即可求解.

设牛、马、羊所吃禾苗分别为

是公比为的等比数列,∴

解得,∴羊主人应偿还:升粟.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,丙所得为(

A.B.1C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近期,某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付,某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),绘制了如图所示的散点图:

(I)根据散点图判断在推广期内,(c,d为为大于零的常数)哪一个适宜作为扫码支付的人次y关于活动推出天数x的回归方程类型?(给出判断即可,不必说明理由)

(Ⅱ)根据(I)的判断结果求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次.

参考数据:

4

62

1.54

2535

50.12

140

3.47

其中

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量AQI指数是反映空气质量状况指数,AQI指数值越小,表明空气质量越好,其对应关系如表:

AQI指数值

空气质量

轻度污染

中度污染

重度污染

严重污染

如图所示的是某市111日至20AQI指数变化的折线图:

下列说法不正确的是(

A.天中空气质量为轻度污染的天数占

B.天中空气质量为优和良的天数为

C.天中AQI指数值的中位数略低于

D.总体来说,该市11月上旬的空气质量比中旬的空气质量好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求直线与曲线公共点的极坐标;

(2)设过点的直线交曲线两点,且的中点为,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,都是等边三角形,且点在底面上的射影为.

1)证明:的中点;

2)求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的倾斜角为,且经过点,以坐标原点O为极点,轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足| ,记点N的轨迹为曲线C

1)①设动点,记是直线的向上方向的单位方向向量,且,以t为参数求直线的参数方程

②求曲线C的极坐标方程并化为直角坐标方程;

2)设直线与曲线C交于PQ两点,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数ab满足a2+b2-ab3

1)求a-b的取值范围;

2)若ab0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆与圆外切并与圆内切,圆心的轨迹为曲线.

1)求的方程;

2)若直线与曲线交于两点,问是否在轴上存在一点,使得当变动时总有?若存在,请说明理由.

查看答案和解析>>

同步练习册答案