精英家教网 > 高中数学 > 题目详情
3.已知圆M的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆M相切.
(1)求圆O的方程;
(2)圆O与x轴交于E,F两点,圆O内的动点D使得|DE|,|DO|,|DF|成等比数列,求$\overrightarrow{DE}$•$\overrightarrow{DF}$的取值范围.

分析 (1)将圆M的方程转化成(x-1)2+(y-1)2=8,求得圆心和半径,根据两圆相切,即可求得圆O的半径,求得圆O的方程;
(2)利用等比数列的性质,两点之间的距离公式求得E和F点坐标及x2-y2=1,由于点D在圆O内,求得y2<$\frac{1}{2}$,由向量数量积的坐标表示可知:$\overrightarrow{DE}$•$\overrightarrow{DF}$=2y2-1,即可求得$\overrightarrow{DE}$•$\overrightarrow{DF}$的取值范围.

解答 解:(1)圆M的方程可整理为:(x-1)2+(y-1)2=8,
故圆心M(1,1),半径R=2$\sqrt{2}$.
圆O的圆心为(0,0),
∵|MO|=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
∴点O在圆M内,
故圆O只能内切于圆M.
设其半径为r.
∵圆O内切于圆M,
∴|MN|=|R-r|,
即 $\sqrt{2}$=|2$\sqrt{2}$-r|,解得:r=$\sqrt{2}$或r=3$\sqrt{2}$(舍去);
所以圆O的方程为:x2+y2=2;
(2)由题意可知:设:E(m,0),F(n,0),m<n,
由$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=2}\\{y=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{y=±\sqrt{2}}\\{y=0}\end{array}\right.$,
∴E(-$\sqrt{2}$,0),F($\sqrt{2}$,0),
设D(x,y),由|DE|、|DO|、|DF|成等比数列,
得|DO|2=|DE|•|DF|,
即:$\sqrt{(x+\sqrt{2})^{2}+{y}^{2}}$•$\sqrt{(x-\sqrt{2})^{2}+{y}^{2}}$=x2+y2
整理得:x2-y2=1.
由于点D在圆O内,
故有$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}<2}\\{{x}^{2}-{y}^{2}=1}\end{array}\right.$,由此得:y2<$\frac{1}{2}$,
$\overrightarrow{DE}$=(-$\sqrt{2}$-x,-y),$\overrightarrow{DF}$=($\sqrt{2}$-x,-y),
∴$\overrightarrow{DE}$•$\overrightarrow{DF}$=(-$\sqrt{2}$-x)($\sqrt{2}$-x)+(-y)(-y)=x2+y2-2=2y2-1,
∴$\overrightarrow{DE}$•$\overrightarrow{DF}$∈[-1,0).

点评 本题考查两圆相切的性质,等比数列的性质,两点之间的距离公式,数量积的坐标运算,二次函数的单调性,考查推理计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.等比数列{an}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=(  )
A.4B.5C.10D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$α,β∈(\frac{11π}{4},\frac{13π}{4})$,则“tan2α>tan2β”的一个充分不必要条件是(  )
A.4α+1>4β+2B.${log_{\frac{1}{2}}}2α<{log_{\frac{1}{2}}}2β$
C.(α+1)3>β3D.α=β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2-2ax-3
(1)若函数在f(x)的单调递减区间(-∞,2],求函数f(x)在区间[3,5]上的最大值.
(2)若函数在f(x)在单区间(-∞,2]上是单调递减,求函数f(1)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若log2x=4,则${x^{\frac{1}{2}}}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知双曲线$\frac{x^2}{a^2}-{y^2}=1,(a>0)$的渐近线方程为$y=±\frac{{\sqrt{3}}}{3}x$,则其焦距为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知甲、乙两人下棋,和棋的概率为$\frac{1}{2}$,乙胜的概率为$\frac{1}{3}$,则甲胜的概率为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,a=8,b=10,A=45°,则此三角形解的情况是(  )
A.一解B.两解C.一解或两解D.无解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a>0,设命题p:函数y=ax在R上单调递减,命题q:对任意实数x都有x2-3ax+1>0恒成立;若p和q中有且只有一个命题为真命题,求a的取值范围.

查看答案和解析>>

同步练习册答案