精英家教网 > 高中数学 > 题目详情
7.等比数列{an}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=(  )
A.4B.5C.10D.20

分析 由等比数列的性质可知a1a5=a2a4=${a}_{3}^{2}$,求得a3=2,由对数的运算性质,∴log2a1+log2a2+log2a3+log2a4+log2a5=log2a1•a2•a3•a4•a5=log225=5.

解答 解:由等比数列性质可知:a1a5=a2a4=${a}_{3}^{2}$,
∴a3=2,
∴log2a1+log2a2+log2a3+log2a4+log2a5=log2a1•a2•a3•a4•a5=log2${a}_{3}^{5}$=log225=5,
故答案为:5.

点评 本题考查等比数列的性质,对数的运算性质,同底数幂的乘法,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在△ABC中,已知($\sqrt{3}$sinB-cosB)($\sqrt{3}$sinC-cosC)=4cosBcosC,且AB+AC=4,则BC长度的取值范围为(  )
A.(0,2]B.[2,4)C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=asinx+bx${\;}^{\frac{1}{3}}}$-1,(a,b∈R),若f(lg$\frac{1}{2017}$)=2016,则f(lg2017)=(  )
A.-2016B.2016C.2018D.-2018

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{xn}的首项x1=3,通项xn=2np+nq,(n∈N,p,q为常数),且x1,x4,x5成等差数列,则p之值为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{log_5}x,x>0\\{2^x},x≤0\end{array}$,则f(f($\frac{1}{25}$))=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}中,a1=1,公差d>0,且a2,a5,a14分别是等比数列{bn}的第二项、第三项、第四项.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{an+bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,△ABC中,三个内角B、A、C成等差数列,且AC=20,BC=30.
(1)求△ABC的面积;
(2)已知平面直角坐标系xOy,点D(20,0),若函数f(x)=Msin(ωx+φ)(M>0,ω>0,|φ|<$\frac{π}{2}$) 的图象经过A、C、D三点,且A、D为f(x)的图象与x轴相邻的两个交点,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知:cosα+sinα=$\frac{2}{3}$,则$\frac{\sqrt{2}sin(2α-\frac{π}{4})+1}{1+tanα}$的值为-$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆M的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆M相切.
(1)求圆O的方程;
(2)圆O与x轴交于E,F两点,圆O内的动点D使得|DE|,|DO|,|DF|成等比数列,求$\overrightarrow{DE}$•$\overrightarrow{DF}$的取值范围.

查看答案和解析>>

同步练习册答案