【题目】在锐角
中,角A,B,C所对边分别为a,b,c,已知
.
(1)求A ;
(2)求
的取值范围.
【答案】(1)
;(2)
.
【解析】
(1)利用余弦定理即可求解.
(2)由
,以及两角和与差的公式,则sin2B+sin2C=1
sin(2B
),
再由
,求出
B
即可求解.
(1)在锐角△ABC中,∵b=3,a2=c2﹣3c+9,
∴可得c2+b2﹣a2=bc,
∴由余弦定理可得:cosA
,
∴由A为锐角,可得A
.
(2)∵sin2B+sin2C=sin2B+sin2(
B)=sin2B+(
cosB
sinB)2=1
(
sin2B
cos2B)=1
sin(2B
),
又∵
,可得
B
,
∴2B
∈(
,
),
∴sin(2B
)∈(
,1],
∴sin2B+sin2C=1
sin(2B
)∈(
,
],
即sin2B+sin2C的取值范围是(
,
].
科目:高中数学 来源: 题型:
【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
![]()
根据该折线图,下列结论错误的是( )
A. 月接待游客量逐月增加
B. 年接待游客量逐年增加
C. 各年的月接待游客量高峰期大致在7,8月
D. 各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点的双曲线
的右焦点为
,右顶点为
.
(1)求双曲线
的方程;
(2)若直线
与双曲线
恒有两个不同的交点
和
,且
(其中
为坐标原点),求实数
取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①
,
,②
,
,③
,
三个条件中任选一个补充在下面问题中,并加以解答.
已知
的内角A,B,C的对边分别为a,b,c,若
,______,求
的面积S.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥
的底面为平行四边形,且
,
,
分别为
中点,过
作平面
分别与线段
相交于点
.
![]()
(Ⅰ)在图中作出平面
使面
‖
(不要求证明);
(II)若
,在(Ⅰ)的条件下求多面体
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
,
,
,
,函数
,
的最小正周期为
.
(1)求
的单调增区间;
(2)方程
;在
上有且只有一个解,求实数n的取值范围;
(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得
+
+m(
-
)+1>f(x2)成立.若存在,求m的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行购物抽奖活动,抽奖箱中放有编号分别为
的五个小球.小球除编号不同外,其余均相同.活动规则如下:从抽奖箱中随机抽取一球,若抽到的小球编号为
,则获得奖金
元;若抽到的小球编号为偶数,则获得奖金
元;若抽到其余编号的小球,则不中奖.现某顾客依次有放回的抽奖两次.
(1)求该顾客两次抽奖后都没有中奖的概率;
(2)求该顾客两次抽奖后获得奖金之和为
元的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com