精英家教网 > 高中数学 > 题目详情
函数y=x2-2x+3(0≤x≤3)的值域是(  )
A.[0,3]B.[2,6]C.[3,4]D.[-1,4]
y=x2-2x+3=(x-1)2+2
∴函数y=x2-2x+3的图象是以x=1为对称轴,开口向上的抛物线
由此可得当x∈[0,3]时,函数在[0,1]上为减函数,在[1,3]上为增函数,
∴函数的最小值为f(1)=2,最大值为f(0)和f(3)的较大者,即f(3)=6
因此,函数在x∈[0,3]时的值域为[2,6]
故选:B
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=x2-2x+5(x∈[-1,2])的最大值是
8
8
,最小值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x2-2x+1
的值域是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2+2x,x∈[-2,3],则值域为
[-1,15]
[-1,15]

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A为函数y=
x-1
x2-3x+2
的定义域,集合B为函数y=
-x2+2x+4
的值域,则A∩B=
[0,1)∪(1,2)∪(2,
5
]
[0,1)∪(1,2)∪(2,
5
]

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2+2x+3(x≥0)的值域为(  )

查看答案和解析>>

同步练习册答案