精英家教网 > 高中数学 > 题目详情
2.已知$f(\frac{2}{x}+1)=lgx$,则f(2)=lg2.

分析 令$\frac{2}{x}$+1=2解得x=2;从而求得.

解答 解:令$\frac{2}{x}$+1=2解得,x=2;
则f(2)=lg2,
故答案为:lg2.

点评 本题考查了整体思想的应用及对应思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知各项均为正数的数列{an}满足a1=3,${a}_{n+1}^{2}={3a}_{n}^{2}+2{a}_{n}{a}_{n+1}$其中n∈N*,设数列{bn}满足bn=$\frac{n{a}_{n}}{(2n+1)•{3}^{n}}$,若存在正整数m,t(m≠t)使得b1,bm,bt成等比数列,则$\frac{t}{m}$=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知m>0,n>0,2m+n=mn,设m+n的最小值是t,则$t-2\sqrt{2}$的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A、B、C的对边分别为a,b,c,a+$\frac{1}{a}$=4cosC,b=1.
(I)若A=90°,求△ABC的面积;
(Ⅱ)若△ABC的面积为$\frac{\sqrt{3}}{2}$,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设等差数列{an}的前n项和为Sn,a2、a4是方程x2-x-3=0的两个根,S5=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$g(x)=\frac{{{4^x}-a}}{2^x}$是奇函数,f(x)=lg(10x+1)+bx是偶函数.
(1)求a+b的值.
(2)若对任意的t∈[0,+∞),不等式g(t2-2t)+g(2t2-k)>0恒成立,求实数k的取值范围.
(3)设$h(x)=f(x)+\frac{1}{2}x$,若存在x∈(-∞,1],使不等式g(x)>h[lg(10a+9)]成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若实数x,y满足$\left\{\begin{array}{l}{x+y≥0}\\{x≤1}\\{x-2y≥0}\end{array}\right.$,则|x|+|y|的取值范围是[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知圆O:x2+y2=r2与圆C:(x-2)2+y2=r2(r>0)在第一象限的一个公共点为P,过P作与x轴平行的直线分别交两圆于不同两点A,B(异于P点),且OA⊥OB,则直线OP的斜率是$\sqrt{3}$,r=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某学校采用系统抽样方法,从该校髙一年级全体800名学生中抽50名学生做视力检査.现将800名学生从1到800进行编号.已知从33〜48这16个数中抽到的数是39,则在第1小组 1〜16中随机抽到的数是(  )
A.5B.7C.11D.13

查看答案和解析>>

同步练习册答案