精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ex+aex , 若f′(x)≥2 恒成立,则a的取值范围为(
A.[3,+∞)
B.(0,3]
C.[﹣3,0)
D.(﹣∞,﹣3]

【答案】D
【解析】解:函数的导数f'(x)=ex﹣aex , 所以由f′(x)≥2 得ex﹣aex≥2 ,即a≤﹣2 ex+e2x成立.
设t=ex , 则t>0,则函数y=(t﹣ 2﹣3
因为t>0,所以当t= 时,y有最小值﹣3,
所以a≤﹣3.
即实数a的取值范围是(﹣∞,﹣3].
故选:D.
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,PB⊥面ABCD,BA=BD= ,AD=2,E,F分别是棱AD,PC的中点.

(1)证明:EF∥平面PAB;
(2)若二面角P﹣AD﹣B为60°,求直线EF与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的焦点在x轴上,长轴长为4,离心率为 . (Ⅰ)求椭圆E的标准方程;
(Ⅱ)已知点A(0,1)和直线l:y=x+m,线段AB是椭圆E的一条弦且直线l垂直平分弦AB,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣x,求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3. (Ⅰ)求函数f(x)在[t,t+1](t>0)上的最小值;
(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(Ⅲ)证明:对一切x∈(0,+∞),都有lnx> 成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.
(Ⅰ)求ω的值及函数f(x)的值域;
(Ⅱ)若x∈[0,1],求函数f(x)的值域;
(Ⅲ)若 ,且 ,求f(x0+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产产品x件的总成本C(x)=1000+x2(万元),已知产品单价P(万元)与产品件数x满足:P2= ,生产100件这样的产品单价为50万元.
(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;
(2)产量x定为多少时总利润L(x)(万元)最大?并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左焦点和上顶点在直线上, 为椭圆上位于轴上方的一点且轴, 为椭圆上不同于的两点,且

(1)求椭圆的标准方程;

(2)设直线轴交于点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线xy10被圆(x1)2y23截得的弦长等于(  )

A. B. 2

C. 2 D. 4

查看答案和解析>>

同步练习册答案