精英家教网 > 高中数学 > 题目详情
数列{an}前n项和为Sn,a1=4,an+1=2Sn-2n+4.
(1)求证:数列{an-1}为等比数列;
(2)设bn=
an-1anan+1
,数列{bn}前n项和为Tn,求证:8Tn<1.
分析:(1)利用数列递推式,再写一式,两式相减,可证数列{an-1}为等比数列;
(2)确定数列{bn}的通项,利用裂项法求前n项和为Tn,即可证得结论.
解答:证明:(1)∵an+1=2Sn-2n+4,∴n≥2时,an=2Sn-1-2(n-1)+4
∴n≥2时,an+1=3an-2(2分)
又a2=2S1-2+4=10,∴n≥1时an+1=3an-2(4分)
∵a1-1=3≠0,∴an-1≠0,
an+1-1
an-1
=3
,∴数列{an-1}为等比数列      (6分)
(2)由(1)an-1=3n,∴an=3n+1
bn=
3n
(3n+1)(3n+1+1)
=
1
2
(
1
3n+1
-
1
3n+1+1
)
(9分)
Tn=
1
2
(
1
31+1
-
1
32+1
+
1
32+1
-
1
33+1
+…+
1
3n+1
-
1
3n+1+1
)
=
1
2
(
1
4
-
1
3n+1+1
)
(11分)
Tn
1
8

∴8Tn<1(12分)
点评:本题考查等比数列的证明,考查裂项法求和,考查不等式的证明,确定数列的通项是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}前n项和为Sn,且Sn=an2+bn+c(a,b,c∈R),已知a1=-28,S2=-52,S5=-100.
(1)求数列{an}的通项公式.
(2)求使得Sn最小的序号n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

Sn为数列{an}前n项和,a1=2,且an+1=Sn+1,则an=
2,n=1
 
.
 
.
 
.
 
.
 
.
,n≥2
.横线上填
3×2n-2
3×2n-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}前n项和为Sn(p-1)Sn=p2-an,n∈N*,p>0,且p≠1,数列{bn}满足bn=2logpan
(1)求an,bn
(2)若p=
1
2
,设数列{
bn
an
}
的前n项和为Tn,求证:0<Tn≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)已知点(an,an-1)在曲线f(x)=
(    )
x
上,且a1=1.
(1)求f(x)的定义域;
(2)求证:
1
4
(n+1)
2
3
-1≤
1
a1
+
1
a2
+…+
1
an
≤4(n+1)
2
3
-1
(n∈N*)
(3)求证:数列{an}前n项和Sn
(3n+2)
3n
2
-
3
2
(n≥1,n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

Sn为数列{an}前n项和,若S n=2an-2(n∈N+),则a2等于(  )

查看答案和解析>>

同步练习册答案