精英家教网 > 高中数学 > 题目详情
7.已知F为抛物线y2=4x的焦点,过点F引一条直线与抛物线交于A、B两点,与抛物线准线交于D点.
(Ⅰ)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值;
(Ⅱ)在抛物线上是否存在一点M,使直线MA,MD,MB的斜率成等差数列,若存在,求出M的坐标,若不存在,请说明理由.

分析 (Ⅰ)设l:x=my+1,A(x1,y1),B(x2,y2),则联立方程化简可得y2-4my-4=0,从而可得$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1•x2+y1•y2=-3;
(Ⅱ)设M(a2,2a),则kMA=$\frac{{y}_{1}-2a}{{x}_{1}-{a}^{2}}$=$\frac{4}{{y}_{1}+2a}$,kMB=$\frac{4}{{y}_{2}+2a}$,kMD=$\frac{2a+\frac{2}{m}}{{a}^{2}+1}$,可得2×$\frac{2a+\frac{2}{m}}{{a}^{2}+1}$=$\frac{4}{{y}_{2}+2a}$+$\frac{4}{{y}_{1}+2a}$恒成立,从而可a2-1)(m+$\frac{1}{m}$)=0,即可求出点M的坐标.

解答 解:(Ⅰ)由题意知,抛物线y2=4x的焦点坐标为( 1,0),∴直线AB的方程为x=my+1(m≠0),
代入抛物线方程得y2-4my-4=0,
设A(x1,y1),B(x2,y2),
则y1+y2=4m,y1y2=-4,x1•x2=1,
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1•x2+y1•y2=-3;
(Ⅱ)设M(a2,2a),
kMA=$\frac{{y}_{1}-2a}{{x}_{1}-{a}^{2}}$=$\frac{4}{{y}_{1}+2a}$,
同理,kMB=$\frac{4}{{y}_{2}+2a}$,kMD=$\frac{2a+\frac{2}{m}}{{a}^{2}+1}$,
∵直线MA,MD,MB的斜率始终成等差数列,
∴2×$\frac{2a+\frac{2}{m}}{{a}^{2}+1}$=$\frac{4}{{y}_{2}+2a}$+$\frac{4}{{y}_{1}+2a}$恒成立;
又∵y1+y2=4m,y1y2=-4,
∴(a2-1)(m+$\frac{1}{m}$)=0,
∴a=±1,
∴存在点M(1,2)或M(1,-2),使得对任意直线l,直线MA,MD,MB的斜率始终成等差数列.

点评 本题考查了直线与圆锥曲线的位置关系的应用,同时考查了学生的化简能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知a>0,设不等式组$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ y≥a(x-3)\end{array}\right.$在平面直角坐标系中所表示的区域的面积为4,则a的值等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在区间[-3,3]上随机取一个数x,使得$\frac{3-x}{x+1}$≥0成立的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在四棱柱ABCD-A′B′C′D′中,底面ABCD为正方形,侧棱AA′⊥底面ABCD,AB=2,AA′=4.给出下面五个命题:
①该四棱柱的外接球的表面积为24π;
②在该四棱柱的12条棱中,与直线B′D异面的棱一共有4条;
③用过点A、C的平面去截该四棱柱,且截面为四边形,则截面四边形中至少有一组对边平行;
④用过点A、C的平面去截该四棱柱,且截面为梯形,则梯形两腰所在直线的交点一定在直线DD′上;
⑤若截面为四边形ACNM,且M、N分别为棱A′D′、C′D′的中点,则截面面积为$\frac{3\sqrt{33}}{2}$.
其中是真命题的序号为①③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=sin(ωx+φ)(ω,φ是常数,ω>0),若f(x)在区间[$\frac{1}{3}$,1]上具有单调性,且f(0)=f($\frac{2}{3}$)=-f(1),则下列有关f(x)的命题正确的有①③④⑤(把所有正确的命题序号都写上)
①f(x)的最小正周期为2;
②f(x)在[1,$\frac{5}{3}$]上具有单调性;
③当x=$\frac{1}{3}$时,函数f(x)取得最值;
④y=f(x+$\frac{5}{6}$)为奇函数;
⑤(-$\frac{φ}{ω}$,-φ)是y=f(x)+ωx图象的一个对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在市高三第一次模拟考试数学学科考试后,某同学对老师说:第(Ⅰ)卷为十道选择题,每题5分,前六道没错,第7、8、9三题均有两个选项能排除,第10题只有一个选项能排除.
(Ⅰ)求该同学选择题得40分的概率;
(Ⅱ)若(Ⅱ)卷能拿65分,该同学数学得分的期望和得分不低于100分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点A(-1.0),B(1,0),若圆 (x-2)2+y2=r2上存在点P.使得∠APB=90°,则实数r的取值范围为(  )
A.(1,3)B.[1,3]C.(1,2]D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π),其图象经过点M($\frac{π}{3}$,$\frac{1}{2}$),且与x轴两个相邻的交点的距离为π.
(1)求f(x)的解析式;
(2)在△ABC中,a=13,f(A)=$\frac{3}{5}$,f(B)=$\frac{5}{13}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=2$\sqrt{3}$,则PC与平面PAD所成角的大小为45°.

查看答案和解析>>

同步练习册答案