精英家教网 > 高中数学 > 题目详情
20.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=2$\sqrt{3}$,则PC与平面PAD所成角的大小为45°.

分析 由PA⊥平面ABCD,即可得到CD⊥PA,CD⊥AD,从而根据线面垂直的判定定理即可得到CD⊥平面PAD,从而∠CPD便是PC和平面PAD所成角,根据已知的边长度即可求得CD=PD,从而得出∠CPD=45°.

解答 解:PA⊥平面ABCD,CD?平面ABCD;
∴CD⊥PA;
又CD⊥AD,AD∩PA=A;
∴CD⊥平面PAD;
∴∠CPD是直线PC和平面PAD所成角;
PD=$\sqrt{P{A}^{2}+A{D}^{2}}$=2$\sqrt{2}$,CD=AB=$\sqrt{B{D}^{2}-A{D}^{2}}=2\sqrt{2}$;
∴∠CPD=45°.
故答案为:45°.

点评 考查线面垂直的性质及判定定理,线面角的概念及求法,直角三角形边的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知F为抛物线y2=4x的焦点,过点F引一条直线与抛物线交于A、B两点,与抛物线准线交于D点.
(Ⅰ)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值;
(Ⅱ)在抛物线上是否存在一点M,使直线MA,MD,MB的斜率成等差数列,若存在,求出M的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的中心的直线交双曲线于点A,B,在双曲线C上任取与点A,B不重合的点P,记直线PA,PB,AB的斜率分别为k1,k2,k,若k1k2>k恒成立,则离心率e的取值范围为(  )
A.1<e<$\sqrt{2}$B.1<e≤$\sqrt{2}$C.e>$\sqrt{2}$D.e≥$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的中心在原点O,焦点在x轴上,离心率为$\frac{1}{2}$,右焦点到右顶点的距离为1
(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M、N是直线l上的两点F1、F2是椭圆的左右焦点,且F1M⊥l,F2N⊥l,求四边形F1MNF2面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴为4,离心率e=$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的方程;
(2)点P是圆x2+y2=b2上第一象限内的任意一点,过P作圆的切线交椭圆C于Q,R两点,F为椭圆的右焦点,求FQ+FR的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在平行四边形ABCD中,AB=1,BD=$\sqrt{2}$,∠ABD=90°,将△ABD沿对角线BD折起,折后的点A变为A1,且A1C=2.
(1)求证:平面A1BD⊥平面BCD;
(2)求异面直线BC与A1D所成角的余弦值;
(3)E为线段A1C上的一个动点,当线段EC的长为多少时,DE与平面BCD所成的角正弦值为$\frac{\sqrt{7}}{7}$?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知角α的终边在函数y=-|x|的图象上,则cosα的值为(  )
A.$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$C.$±\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.7人排队,其中甲、乙、丙3人顺序一定,共有840不同的排法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}满足2an+1+an=0,a2=1,则{an}的前9项和等于(  )
A.-$\frac{2}{3}$(1-2-9B.$\frac{1}{3}$(1-2-9C.-$\frac{4}{3}$(1+2-9D.(1-2-9

查看答案和解析>>

同步练习册答案