精英家教网 > 高中数学 > 题目详情
10.已知数列{an}满足2an+1+an=0,a2=1,则{an}的前9项和等于(  )
A.-$\frac{2}{3}$(1-2-9B.$\frac{1}{3}$(1-2-9C.-$\frac{4}{3}$(1+2-9D.(1-2-9

分析 通过2an+1+an=0、a2=1可得数列{an}是以-2为首项、-$\frac{1}{2}$为公比的等比数列,计算即得结论.

解答 解:∵2an+1+an=0,a2=1,
∴a1=-2a2=-2,
又∵$\frac{{a}_{n+1}}{{a}_{n}}$=-$\frac{1}{2}$,∴数列{an}是以-2为首项、-$\frac{1}{2}$为公比的等比数列,
∴Sn=$\frac{-2[1-(-\frac{1}{2})^{n}]}{1-(-\frac{1}{2})}$=$\frac{4}{3}$[(-1)n•2-n-1],
∴S9=$\frac{4}{3}$(-2-9-1)=-$\frac{4}{3}$(1+2-9),
故选:C.

点评 本题考查求数列的和,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=2$\sqrt{3}$,则PC与平面PAD所成角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,内角A、B、C的对边分别为a、b、c,若其面积S=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{16}$,则cos2A=$\frac{255}{257}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,P为⊙O外一点,过P=点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PA=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xOy中,若函数y=3sin(2x+$\frac{π}{4}$)的图象向左平移φ(0<φ<$\frac{π}{2}$)个单位后,所得函数图象关于原点成中心对称,则φ的值为$\frac{3π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=ex+x2(x<0),g(x)=x2-4x+$\frac{9}{2}$+ln(x+t-2),若f(x)的图象上存在一点P,它关于直线x=1的对称点P′落在y=g(x)的图象上,则t的取值范围是(  )
A.(-∞,$\frac{1}{\sqrt{e}}$)B.(-$\sqrt{e}$,$\frac{1}{\sqrt{e}}$)C.(-$\frac{1}{\sqrt{e}}$,$\sqrt{e}$)D.(0,$\sqrt{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:
奖级   摸出红.蓝球个数   获奖金额
一等奖 3红1蓝            200元
二等奖 3红0蓝            50元
三等奖 2红1蓝            10元
其余情况无奖且每次摸奖最多只能获得一个奖级.
(Ⅰ)求一次摸奖恰好摸到1个红球的概率;
(Ⅱ)求摸奖者在一次摸奖中获奖金额X的分布列与期望E(X ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=ex(x-a-1)-$\frac{1}{2}$x2+ax,a>0.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若x∈(0,1)时,f(x)<-a-1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的各项均为正数,其前n项和为Sn,且满足a1=1,2Sn=n(an+1-1),n∈N*
(1)求a2,a3的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}<\frac{7}{4}$.

查看答案和解析>>

同步练习册答案